Some classical function systems in separable Orlicz spaces
Studia Mathematica, Tome 121 (1996) no. 2, pp. 193-205

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The boundedness of (sub)sequences of partial Fourier and Fourier-Walsh sums in subspaces of separable Orlicz spaces is studied. The boundedness of the shift operator and Paley function with respect to the Haar system is also investigated. These results are applied to get the analogues of the classical theorems on basicness of the trigonometric and Walsh systems in nonreflexive separable Orlicz spaces.
DOI : 10.4064/sm-121-2-193-205
Keywords: Fourier, Fourier-Walsh series, Paley function, Haar system, separable Orlicz space

C. Finet 1 ; G. E. Tkebuchava 1

1
@article{10_4064_sm_121_2_193_205,
     author = {C. Finet and G. E. Tkebuchava},
     title = {Some classical function systems in separable {Orlicz} spaces},
     journal = {Studia Mathematica},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {121},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-121-2-193-205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-193-205/}
}
TY  - JOUR
AU  - C. Finet
AU  - G. E. Tkebuchava
TI  - Some classical function systems in separable Orlicz spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 193
EP  - 205
VL  - 121
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-193-205/
DO  - 10.4064/sm-121-2-193-205
LA  - en
ID  - 10_4064_sm_121_2_193_205
ER  - 
%0 Journal Article
%A C. Finet
%A G. E. Tkebuchava
%T Some classical function systems in separable Orlicz spaces
%J Studia Mathematica
%D 1996
%P 193-205
%V 121
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-121-2-193-205/
%R 10.4064/sm-121-2-193-205
%G en
%F 10_4064_sm_121_2_193_205
C. Finet; G. E. Tkebuchava. Some classical function systems in separable Orlicz spaces. Studia Mathematica, Tome 121 (1996) no. 2, pp. 193-205. doi: 10.4064/sm-121-2-193-205

Cité par Sources :