An uncertainty principle related to the Poisson summation formula
Studia Mathematica, Tome 121 (1996) no. 1, pp. 87-104
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a class of uncertainty principles of the form $∥S_{g}f∥_{1} ≤ C(∥x^{a}f∥_{p} + ∥ω^{b}f̂∥_{q})$, where $S_{g}f$ is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.
Keywords:
uncertainty principle, Poisson summation formula, unimodular polynomial, modulation space, time-frequency analysis, phase space
Affiliations des auteurs :
K. Gröchenig 1
@article{10_4064_sm_121_1_87_104,
author = {K. Gr\"ochenig},
title = {An uncertainty principle related to the {Poisson} summation formula},
journal = {Studia Mathematica},
pages = {87--104},
publisher = {mathdoc},
volume = {121},
number = {1},
year = {1996},
doi = {10.4064/sm-121-1-87-104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-87-104/}
}
TY - JOUR AU - K. Gröchenig TI - An uncertainty principle related to the Poisson summation formula JO - Studia Mathematica PY - 1996 SP - 87 EP - 104 VL - 121 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-87-104/ DO - 10.4064/sm-121-1-87-104 LA - en ID - 10_4064_sm_121_1_87_104 ER -
K. Gröchenig. An uncertainty principle related to the Poisson summation formula. Studia Mathematica, Tome 121 (1996) no. 1, pp. 87-104. doi: 10.4064/sm-121-1-87-104
Cité par Sources :