Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product
Studia Mathematica, Tome 121 (1996) no. 1, pp. 53-65

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H(G_1)$ be the set of all holomorphic functions on the domain $G_1.$ Two domains $G_1$ and $G_2$ are called Hadamard-isomorphic if $H(G_1)$ and $H(G_2)$ are isomorphic algebras with respect to the Hadamard product. Our main result states that two admissible domains are Hadamard-isomorphic if and only if they are equal.
DOI : 10.4064/sm-121-1-53-65
Keywords: Hadamard product, $B_0$-algebras, homomorphisms

Hermann Render 1 ; Andreas Sauer 1

1
@article{10_4064_sm_121_1_53_65,
     author = {Hermann Render and Andreas Sauer},
     title = {Invariance properties of homomorphisms on algebras of holomorphic functions with the {Hadamard} product},
     journal = {Studia Mathematica},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {121},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-121-1-53-65},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-53-65/}
}
TY  - JOUR
AU  - Hermann Render
AU  - Andreas Sauer
TI  - Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product
JO  - Studia Mathematica
PY  - 1996
SP  - 53
EP  - 65
VL  - 121
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-53-65/
DO  - 10.4064/sm-121-1-53-65
LA  - en
ID  - 10_4064_sm_121_1_53_65
ER  - 
%0 Journal Article
%A Hermann Render
%A Andreas Sauer
%T Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product
%J Studia Mathematica
%D 1996
%P 53-65
%V 121
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-53-65/
%R 10.4064/sm-121-1-53-65
%G en
%F 10_4064_sm_121_1_53_65
Hermann Render; Andreas Sauer. Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product. Studia Mathematica, Tome 121 (1996) no. 1, pp. 53-65. doi: 10.4064/sm-121-1-53-65

Cité par Sources :