Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product
Studia Mathematica, Tome 121 (1996) no. 1, pp. 53-65
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H(G_1)$ be the set of all holomorphic functions on the domain $G_1.$ Two domains $G_1$ and $G_2$ are called Hadamard-isomorphic if $H(G_1)$ and $H(G_2)$ are isomorphic algebras with respect to the Hadamard product. Our main result states that two admissible domains are Hadamard-isomorphic if and only if they are equal.
Keywords:
Hadamard product, $B_0$-algebras, homomorphisms
Affiliations des auteurs :
Hermann Render 1 ; Andreas Sauer 1
@article{10_4064_sm_121_1_53_65,
author = {Hermann Render and Andreas Sauer},
title = {Invariance properties of homomorphisms on algebras of holomorphic functions with the {Hadamard} product},
journal = {Studia Mathematica},
pages = {53--65},
publisher = {mathdoc},
volume = {121},
number = {1},
year = {1996},
doi = {10.4064/sm-121-1-53-65},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-53-65/}
}
TY - JOUR AU - Hermann Render AU - Andreas Sauer TI - Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product JO - Studia Mathematica PY - 1996 SP - 53 EP - 65 VL - 121 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-53-65/ DO - 10.4064/sm-121-1-53-65 LA - en ID - 10_4064_sm_121_1_53_65 ER -
%0 Journal Article %A Hermann Render %A Andreas Sauer %T Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product %J Studia Mathematica %D 1996 %P 53-65 %V 121 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-121-1-53-65/ %R 10.4064/sm-121-1-53-65 %G en %F 10_4064_sm_121_1_53_65
Hermann Render; Andreas Sauer. Invariance properties of homomorphisms on algebras of holomorphic functions with the Hadamard product. Studia Mathematica, Tome 121 (1996) no. 1, pp. 53-65. doi: 10.4064/sm-121-1-53-65
Cité par Sources :