$(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative
Studia Mathematica, Tome 120 (1996) no. 3, pp. 271-288

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space $H_{p,q}$ to $L_{p,q}$ (2/3 p ∞, 0 q ≤ ∞) and is of weak type $(L_1,L_1)$. As a consequence we show that the dyadic integral of a ∞ function $f ∈ L_1$ is dyadically differentiable and its derivative is f a.e.
DOI : 10.4064/sm-120-3-271-288
Keywords: Hardy spaces, p-atom, interpolation, Walsh functions, dyadic derivative

Ferenc Weisz 1

1
@article{10_4064_sm_120_3_271_288,
     author = {Ferenc Weisz},
     title = {$(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative},
     journal = {Studia Mathematica},
     pages = {271--288},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-120-3-271-288},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-271-288/}
}
TY  - JOUR
AU  - Ferenc Weisz
TI  - $(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative
JO  - Studia Mathematica
PY  - 1996
SP  - 271
EP  - 288
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-271-288/
DO  - 10.4064/sm-120-3-271-288
LA  - en
ID  - 10_4064_sm_120_3_271_288
ER  - 
%0 Journal Article
%A Ferenc Weisz
%T $(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative
%J Studia Mathematica
%D 1996
%P 271-288
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-271-288/
%R 10.4064/sm-120-3-271-288
%G en
%F 10_4064_sm_120_3_271_288
Ferenc Weisz. $(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative. Studia Mathematica, Tome 120 (1996) no. 3, pp. 271-288. doi: 10.4064/sm-120-3-271-288

Cité par Sources :