$(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative
Studia Mathematica, Tome 120 (1996) no. 3, pp. 271-288
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space $H_{p,q}$ to $L_{p,q}$ (2/3 p ∞, 0 q ≤ ∞) and is of weak type $(L_1,L_1)$. As a consequence we show that the dyadic integral of a ∞ function $f ∈ L_1$ is dyadically differentiable and its derivative is f a.e.
Keywords:
Hardy spaces, p-atom, interpolation, Walsh functions, dyadic derivative
Affiliations des auteurs :
Ferenc Weisz 1
@article{10_4064_sm_120_3_271_288,
author = {Ferenc Weisz},
title = {$(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative},
journal = {Studia Mathematica},
pages = {271--288},
publisher = {mathdoc},
volume = {120},
number = {3},
year = {1996},
doi = {10.4064/sm-120-3-271-288},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-271-288/}
}
TY - JOUR AU - Ferenc Weisz TI - $(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative JO - Studia Mathematica PY - 1996 SP - 271 EP - 288 VL - 120 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-271-288/ DO - 10.4064/sm-120-3-271-288 LA - en ID - 10_4064_sm_120_3_271_288 ER -
%0 Journal Article %A Ferenc Weisz %T $(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative %J Studia Mathematica %D 1996 %P 271-288 %V 120 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-271-288/ %R 10.4064/sm-120-3-271-288 %G en %F 10_4064_sm_120_3_271_288
Ferenc Weisz. $(H_p,L_p)$-type inequalities for the two-dimensional dyadic derivative. Studia Mathematica, Tome 120 (1996) no. 3, pp. 271-288. doi: 10.4064/sm-120-3-271-288
Cité par Sources :