The multiplicity of solutions and geometry of a nonlinear elliptic equation
Studia Mathematica, Tome 120 (1996) no. 3, pp. 259-270

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Ω be a bounded domain in $ℝ^n$ with smooth boundary ∂Ω and let L denote a second order linear elliptic differential operator and a mapping from $L^2(Ω)$ into itself with compact inverse, with eigenvalues $-λ_{i}$, each repeated according to its multiplicity, 0 λ_{1} λ_{2} λ_{3} ≤ ... ≤ λ_{i} ≤ ... → ∞. We consider a semilinear elliptic Dirichlet problem $Lu+bu^+-au^-=f(x)$ in Ω, u=0 on ∂ Ω. We assume that $a λ_{1}$, $λ_{2} b λ_{3}$ and f is generated by $ϕ_{1}$ and $ϕ_{2}$. We show a relation between the multiplicity of solutions and source terms in the equation.
DOI : 10.4064/sm-120-3-259-270

Q-Heung Choi 1

1
@article{10_4064_sm_120_3_259_270,
     author = {Q-Heung Choi},
     title = {The multiplicity of solutions and geometry of a nonlinear elliptic equation},
     journal = {Studia Mathematica},
     pages = {259--270},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-120-3-259-270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-259-270/}
}
TY  - JOUR
AU  - Q-Heung Choi
TI  - The multiplicity of solutions and geometry of a nonlinear elliptic equation
JO  - Studia Mathematica
PY  - 1996
SP  - 259
EP  - 270
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-259-270/
DO  - 10.4064/sm-120-3-259-270
LA  - en
ID  - 10_4064_sm_120_3_259_270
ER  - 
%0 Journal Article
%A Q-Heung Choi
%T The multiplicity of solutions and geometry of a nonlinear elliptic equation
%J Studia Mathematica
%D 1996
%P 259-270
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-259-270/
%R 10.4064/sm-120-3-259-270
%G en
%F 10_4064_sm_120_3_259_270
Q-Heung Choi. The multiplicity of solutions and geometry of a nonlinear elliptic equation. Studia Mathematica, Tome 120 (1996) no. 3, pp. 259-270. doi: 10.4064/sm-120-3-259-270

Cité par Sources :