A non-regular Toeplitz flow with preset pure point spectrum
Studia Mathematica, Tome 120 (1996) no. 3, pp. 235-246
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given an arbitrary countable subgroup $σ_0$ of the torus, containing infinitely many rationals, we construct a strictly ergodic 0-1 Toeplitz flow with pure point spectrum equal to $σ_0$. For a large class of Toeplitz flows certain eigenvalues are induced by eigenvalues of the flow Y which can be seen along the aperiodic parts.
Keywords:
Toeplitz sequence, pure point spectrum, strict ergodicity, group extension
Affiliations des auteurs :
T. Downarowicz 1 ;  1
@article{10_4064_sm_120_3_235_246,
author = {T. Downarowicz and },
title = {A non-regular {Toeplitz} flow with preset pure point spectrum},
journal = {Studia Mathematica},
pages = {235--246},
publisher = {mathdoc},
volume = {120},
number = {3},
year = {1996},
doi = {10.4064/sm-120-3-235-246},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-235-246/}
}
TY - JOUR AU - T. Downarowicz AU - TI - A non-regular Toeplitz flow with preset pure point spectrum JO - Studia Mathematica PY - 1996 SP - 235 EP - 246 VL - 120 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-235-246/ DO - 10.4064/sm-120-3-235-246 LA - en ID - 10_4064_sm_120_3_235_246 ER -
T. Downarowicz; . A non-regular Toeplitz flow with preset pure point spectrum. Studia Mathematica, Tome 120 (1996) no. 3, pp. 235-246. doi: 10.4064/sm-120-3-235-246
Cité par Sources :