Operators preserving orthogonality of polynomials
Studia Mathematica, Tome 120 (1996) no. 3, pp. 205-218

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let S be a degree preserving linear operator of ℝ[X] into itself. The question is if, preserving orthogonality of some orthogonal polynomial sequences, S must necessarily be an operator of composition with some affine function of ℝ. In [2] this problem was considered for S mapping sequences of Laguerre polynomials onto sequences of orthogonal polynomials. Here we improve substantially the theorems of [2] as well as disprove the conjecture proposed there. We also consider the same questions for polynomials orthogonal on the unit circle.
DOI : 10.4064/sm-120-3-205-218
Keywords: Laguerre polynomials, polynomials orthogonal on the unit circle, linear operators preserving orthogonality

Francisco Marcellán 1 ;  1

1
@article{10_4064_sm_120_3_205_218,
     author = {Francisco Marcell\'an and  },
     title = {Operators preserving orthogonality of polynomials},
     journal = {Studia Mathematica},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-120-3-205-218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-205-218/}
}
TY  - JOUR
AU  - Francisco Marcellán
AU  -  
TI  - Operators preserving orthogonality of polynomials
JO  - Studia Mathematica
PY  - 1996
SP  - 205
EP  - 218
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-205-218/
DO  - 10.4064/sm-120-3-205-218
LA  - en
ID  - 10_4064_sm_120_3_205_218
ER  - 
%0 Journal Article
%A Francisco Marcellán
%A  
%T Operators preserving orthogonality of polynomials
%J Studia Mathematica
%D 1996
%P 205-218
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-205-218/
%R 10.4064/sm-120-3-205-218
%G en
%F 10_4064_sm_120_3_205_218
Francisco Marcellán;  . Operators preserving orthogonality of polynomials. Studia Mathematica, Tome 120 (1996) no. 3, pp. 205-218. doi: 10.4064/sm-120-3-205-218

Cité par Sources :