Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces
Studia Mathematica, Tome 120 (1996) no. 3, pp. 191-204
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For combining two convex bodies C and D to produce a third body, two of the most important ways are the operation ∓ of forming the closure of the vector sum C+D and the operation γ̅ of forming the closure of the convex hull of C ⋃ D. When the containing normed linear space X is reflexive, it follows from weak compactness that the vector sum and the convex hull are already closed, and from this it follows that the class of all rotund bodies in X is stable with respect to the operation ∓ and the class of all smooth bodies in X is stable with respect to both ∓ and γ̅. In our paper it is shown that when X is separable, these stability properties of rotundity (resp. smoothness) are actually equivalent to the reflexivity of X. The characterizations remain valid for each nonseparable X that contains a rotund (resp. smooth) body.
Keywords:
normed linear space, reflexive, convex body, smooth, rotund, strictly convex, vector sum, convex hull, stability
Affiliations des auteurs :
Victor Klee 1 ; L. Veselý 1 ; C. Zanco 1
@article{10_4064_sm_120_3_191_204,
author = {Victor Klee and L. Vesel\'y and C. Zanco},
title = {Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces},
journal = {Studia Mathematica},
pages = {191--204},
publisher = {mathdoc},
volume = {120},
number = {3},
year = {1996},
doi = {10.4064/sm-120-3-191-204},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-191-204/}
}
TY - JOUR AU - Victor Klee AU - L. Veselý AU - C. Zanco TI - Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces JO - Studia Mathematica PY - 1996 SP - 191 EP - 204 VL - 120 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-191-204/ DO - 10.4064/sm-120-3-191-204 LA - en ID - 10_4064_sm_120_3_191_204 ER -
%0 Journal Article %A Victor Klee %A L. Veselý %A C. Zanco %T Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces %J Studia Mathematica %D 1996 %P 191-204 %V 120 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-191-204/ %R 10.4064/sm-120-3-191-204 %G en %F 10_4064_sm_120_3_191_204
Victor Klee; L. Veselý; C. Zanco. Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces. Studia Mathematica, Tome 120 (1996) no. 3, pp. 191-204. doi: 10.4064/sm-120-3-191-204
Cité par Sources :