Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces
Studia Mathematica, Tome 120 (1996) no. 3, pp. 191-204

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For combining two convex bodies C and D to produce a third body, two of the most important ways are the operation ∓ of forming the closure of the vector sum C+D and the operation γ̅ of forming the closure of the convex hull of C ⋃ D. When the containing normed linear space X is reflexive, it follows from weak compactness that the vector sum and the convex hull are already closed, and from this it follows that the class of all rotund bodies in X is stable with respect to the operation ∓ and the class of all smooth bodies in X is stable with respect to both ∓ and γ̅. In our paper it is shown that when X is separable, these stability properties of rotundity (resp. smoothness) are actually equivalent to the reflexivity of X. The characterizations remain valid for each nonseparable X that contains a rotund (resp. smooth) body.
DOI : 10.4064/sm-120-3-191-204
Keywords: normed linear space, reflexive, convex body, smooth, rotund, strictly convex, vector sum, convex hull, stability

Victor Klee 1 ; L. Veselý 1 ; C. Zanco 1

1
@article{10_4064_sm_120_3_191_204,
     author = {Victor Klee and L. Vesel\'y and C. Zanco},
     title = {Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces},
     journal = {Studia Mathematica},
     pages = {191--204},
     publisher = {mathdoc},
     volume = {120},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-120-3-191-204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-191-204/}
}
TY  - JOUR
AU  - Victor Klee
AU  - L. Veselý
AU  - C. Zanco
TI  - Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 191
EP  - 204
VL  - 120
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-191-204/
DO  - 10.4064/sm-120-3-191-204
LA  - en
ID  - 10_4064_sm_120_3_191_204
ER  - 
%0 Journal Article
%A Victor Klee
%A L. Veselý
%A C. Zanco
%T Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces
%J Studia Mathematica
%D 1996
%P 191-204
%V 120
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-3-191-204/
%R 10.4064/sm-120-3-191-204
%G en
%F 10_4064_sm_120_3_191_204
Victor Klee; L. Veselý; C. Zanco. Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces. Studia Mathematica, Tome 120 (1996) no. 3, pp. 191-204. doi: 10.4064/sm-120-3-191-204

Cité par Sources :