On invariant measures for power bounded positive operators
Studia Mathematica, Tome 120 (1996) no. 2, pp. 183-189
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a counterexample showing that $\overline{(I-T*)L_{∞}} ∩ L^{+}_{∞} = {0}$ does not imply the existence of a strictly positive function u in $L_1$ with Tu = u, where T is a power bounded positive linear operator on $L_1$ of a σ-finite measure space. This settles a conjecture by Brunel, Horowitz, and Lin.
Keywords:
power bounded and Cesàro bounded positive operators, invariant measures, $L_1$ spaces
Affiliations des auteurs :
Ryotaro Sato 1
@article{10_4064_sm_120_2_183_189,
author = {Ryotaro Sato},
title = {On invariant measures for power bounded positive operators},
journal = {Studia Mathematica},
pages = {183--189},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1996},
doi = {10.4064/sm-120-2-183-189},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-183-189/}
}
TY - JOUR AU - Ryotaro Sato TI - On invariant measures for power bounded positive operators JO - Studia Mathematica PY - 1996 SP - 183 EP - 189 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-183-189/ DO - 10.4064/sm-120-2-183-189 LA - en ID - 10_4064_sm_120_2_183_189 ER -
Ryotaro Sato. On invariant measures for power bounded positive operators. Studia Mathematica, Tome 120 (1996) no. 2, pp. 183-189. doi: 10.4064/sm-120-2-183-189
Cité par Sources :