On invariant measures for power bounded positive operators
Studia Mathematica, Tome 120 (1996) no. 2, pp. 183-189

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a counterexample showing that $\overline{(I-T*)L_{∞}} ∩ L^{+}_{∞} = {0}$ does not imply the existence of a strictly positive function u in $L_1$ with Tu = u, where T is a power bounded positive linear operator on $L_1$ of a σ-finite measure space. This settles a conjecture by Brunel, Horowitz, and Lin.
DOI : 10.4064/sm-120-2-183-189
Keywords: power bounded and Cesàro bounded positive operators, invariant measures, $L_1$ spaces

Ryotaro Sato 1

1
@article{10_4064_sm_120_2_183_189,
     author = {Ryotaro Sato},
     title = {On invariant measures for power bounded positive operators},
     journal = {Studia Mathematica},
     pages = {183--189},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-120-2-183-189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-183-189/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - On invariant measures for power bounded positive operators
JO  - Studia Mathematica
PY  - 1996
SP  - 183
EP  - 189
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-183-189/
DO  - 10.4064/sm-120-2-183-189
LA  - en
ID  - 10_4064_sm_120_2_183_189
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T On invariant measures for power bounded positive operators
%J Studia Mathematica
%D 1996
%P 183-189
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-183-189/
%R 10.4064/sm-120-2-183-189
%G en
%F 10_4064_sm_120_2_183_189
Ryotaro Sato. On invariant measures for power bounded positive operators. Studia Mathematica, Tome 120 (1996) no. 2, pp. 183-189. doi: 10.4064/sm-120-2-183-189

Cité par Sources :