On approach regions for the conjugate Poisson integral and singular integrals
Studia Mathematica, Tome 120 (1996) no. 2, pp. 169-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ũ denote the conjugate Poisson integral of a function $f ∈ L^{p}(ℝ)$. We give conditions on a region Ω so that $lim_{(v,ε)→(0,0)}_{(v,ε)∈Ω} ũ(x+v,ε) = Hf(x)$, the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that $sup_{(v,r)∈Ω} |ʃ_{|t|>r} k(x+v-t)f(t)dt|$ is a bounded operator on $L^p$, 1 p ∞, and is weak (1,1).
Keywords:
cone condition, conjugate Poisson integral, singular integrals, ergodic Hilbert transform
Affiliations des auteurs :
S. Ferrando 1 ;  1 ;  1
@article{10_4064_sm_120_2_169_182,
author = {S. Ferrando and and },
title = {On approach regions for the conjugate {Poisson} integral and singular integrals},
journal = {Studia Mathematica},
pages = {169--182},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1996},
doi = {10.4064/sm-120-2-169-182},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-169-182/}
}
TY - JOUR AU - S. Ferrando AU - AU - TI - On approach regions for the conjugate Poisson integral and singular integrals JO - Studia Mathematica PY - 1996 SP - 169 EP - 182 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-169-182/ DO - 10.4064/sm-120-2-169-182 LA - en ID - 10_4064_sm_120_2_169_182 ER -
%0 Journal Article %A S. Ferrando %A %A %T On approach regions for the conjugate Poisson integral and singular integrals %J Studia Mathematica %D 1996 %P 169-182 %V 120 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-169-182/ %R 10.4064/sm-120-2-169-182 %G en %F 10_4064_sm_120_2_169_182
S. Ferrando; ; . On approach regions for the conjugate Poisson integral and singular integrals. Studia Mathematica, Tome 120 (1996) no. 2, pp. 169-182. doi: 10.4064/sm-120-2-169-182
Cité par Sources :