On approach regions for the conjugate Poisson integral and singular integrals
Studia Mathematica, Tome 120 (1996) no. 2, pp. 169-182

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let ũ denote the conjugate Poisson integral of a function $f ∈ L^{p}(ℝ)$. We give conditions on a region Ω so that $lim_{(v,ε)→(0,0)}_{(v,ε)∈Ω} ũ(x+v,ε) = Hf(x)$, the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that $sup_{(v,r)∈Ω} |ʃ_{|t|>r} k(x+v-t)f(t)dt|$ is a bounded operator on $L^p$, 1 p ∞, and is weak (1,1).
DOI : 10.4064/sm-120-2-169-182
Keywords: cone condition, conjugate Poisson integral, singular integrals, ergodic Hilbert transform

S. Ferrando 1 ;  1 ;  1

1
@article{10_4064_sm_120_2_169_182,
     author = {S. Ferrando and   and  },
     title = {On approach regions for the conjugate {Poisson} integral and singular integrals},
     journal = {Studia Mathematica},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-120-2-169-182},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-169-182/}
}
TY  - JOUR
AU  - S. Ferrando
AU  -  
AU  -  
TI  - On approach regions for the conjugate Poisson integral and singular integrals
JO  - Studia Mathematica
PY  - 1996
SP  - 169
EP  - 182
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-169-182/
DO  - 10.4064/sm-120-2-169-182
LA  - en
ID  - 10_4064_sm_120_2_169_182
ER  - 
%0 Journal Article
%A S. Ferrando
%A  
%A  
%T On approach regions for the conjugate Poisson integral and singular integrals
%J Studia Mathematica
%D 1996
%P 169-182
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-169-182/
%R 10.4064/sm-120-2-169-182
%G en
%F 10_4064_sm_120_2_169_182
S. Ferrando;  ;  . On approach regions for the conjugate Poisson integral and singular integrals. Studia Mathematica, Tome 120 (1996) no. 2, pp. 169-182. doi: 10.4064/sm-120-2-169-182

Cité par Sources :