Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions
Studia Mathematica, Tome 120 (1996) no. 2, pp. 113-153
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the ideal structure of two topological Beurling algebras which arise naturally in the study of closed ideals of $A^{+}$. Even in the case of closed ideals I such that $h(I) = E_{1/p}$, the perfect symmetric set of constant ratio 1/p, some questions remain open, despite the fact that closed ideals J of $A^{+}$ such that $h(J) = E_{1/p}$ can be completely described in terms of inner functions. The ideal theory of the topological Beurling algebras considered in this paper is related to questions of synthesis for hyperdistributions such that $lim sup_{n→-∞}$ |\hatφ(n)| ∞$ and such that $lim sup_{n→∞} (log^{+}|\hatφ(n)|)/√n ∞$.
@article{10_4064_sm_120_2_113_153,
author = {J. Esterle},
title = {Closed ideals in certain {Beurling} algebras, and synthesis of hyperdistributions},
journal = {Studia Mathematica},
pages = {113--153},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1996},
doi = {10.4064/sm-120-2-113-153},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-113-153/}
}
TY - JOUR AU - J. Esterle TI - Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions JO - Studia Mathematica PY - 1996 SP - 113 EP - 153 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-113-153/ DO - 10.4064/sm-120-2-113-153 LA - en ID - 10_4064_sm_120_2_113_153 ER -
%0 Journal Article %A J. Esterle %T Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions %J Studia Mathematica %D 1996 %P 113-153 %V 120 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-2-113-153/ %R 10.4064/sm-120-2-113-153 %G en %F 10_4064_sm_120_2_113_153
J. Esterle. Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions. Studia Mathematica, Tome 120 (1996) no. 2, pp. 113-153. doi: 10.4064/sm-120-2-113-153
Cité par Sources :