Invariant densities for C¹ maps
Studia Mathematica, Tome 120 (1996) no. 1, pp. 83-88

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the set of $C^1$ expanding maps of the circle which have a unique absolutely continuous invariant probability measure whose density is unbounded, and show that this set is dense in the space of $C^1$ expanding maps with the $C^1$ topology. This is in contrast with results for $C^2$ or $C^{1+ε}$ maps, where the invariant densities can be shown to be continuous.
DOI : 10.4064/sm-120-1-83-88
Keywords: cocycle, expanding map, invariant density, absolutely continuous invariant measure

Anthony N. Quas 1

1
@article{10_4064_sm_120_1_83_88,
     author = {Anthony N. Quas},
     title = {Invariant densities for {C{\textonesuperior}} maps},
     journal = {Studia Mathematica},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-120-1-83-88},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-83-88/}
}
TY  - JOUR
AU  - Anthony N. Quas
TI  - Invariant densities for C¹ maps
JO  - Studia Mathematica
PY  - 1996
SP  - 83
EP  - 88
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-83-88/
DO  - 10.4064/sm-120-1-83-88
LA  - en
ID  - 10_4064_sm_120_1_83_88
ER  - 
%0 Journal Article
%A Anthony N. Quas
%T Invariant densities for C¹ maps
%J Studia Mathematica
%D 1996
%P 83-88
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-83-88/
%R 10.4064/sm-120-1-83-88
%G en
%F 10_4064_sm_120_1_83_88
Anthony N. Quas. Invariant densities for C¹ maps. Studia Mathematica, Tome 120 (1996) no. 1, pp. 83-88. doi: 10.4064/sm-120-1-83-88

Cité par Sources :