Polynomial selections and separation by polynomials
Studia Mathematica, Tome 120 (1996) no. 1, pp. 75-82

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.
DOI : 10.4064/sm-120-1-75-82
Keywords: separation theorem, set-valued function, selection, n-convex function, n-concave function, affine function, Helly's theorem, Lagrange interpolating polynomial

Szymon Wąsowicz 1

1
@article{10_4064_sm_120_1_75_82,
     author = {Szymon W\k{a}sowicz},
     title = {Polynomial selections and separation by polynomials},
     journal = {Studia Mathematica},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-120-1-75-82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-75-82/}
}
TY  - JOUR
AU  - Szymon Wąsowicz
TI  - Polynomial selections and separation by polynomials
JO  - Studia Mathematica
PY  - 1996
SP  - 75
EP  - 82
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-75-82/
DO  - 10.4064/sm-120-1-75-82
LA  - en
ID  - 10_4064_sm_120_1_75_82
ER  - 
%0 Journal Article
%A Szymon Wąsowicz
%T Polynomial selections and separation by polynomials
%J Studia Mathematica
%D 1996
%P 75-82
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-75-82/
%R 10.4064/sm-120-1-75-82
%G en
%F 10_4064_sm_120_1_75_82
Szymon Wąsowicz. Polynomial selections and separation by polynomials. Studia Mathematica, Tome 120 (1996) no. 1, pp. 75-82. doi: 10.4064/sm-120-1-75-82

Cité par Sources :