Analytic and $C^k$ approximations of norms in separable Banach spaces
Studia Mathematica, Tome 120 (1996) no. 1, pp. 61-74
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that in separable Hilbert spaces, in $ℓ_{p}(ℕ)$ for p an even integer, and in $L_{p}[0,1]$ for p an even integer, every equivalent norm can be approximated uniformly on bounded sets by analytic norms. In $ℓ_{p}(ℕ)$ and in $L_{p}[0,1]$ for p ∉ ℕ (resp. for p an odd integer), every equivalent norm can be approximated uniformly on bounded sets by $C^[p]}$-smooth norms (resp. by $C^{p-1}$-smooth norms).
Keywords:
analytic norm, approximation, convex function, geometry of Banach spaces
Affiliations des auteurs :
Robert Deville 1 ;  1 ;  1
@article{10_4064_sm_120_1_61_74,
author = {Robert Deville and and },
title = {Analytic and $C^k$ approximations of norms in separable {Banach} spaces},
journal = {Studia Mathematica},
pages = {61--74},
publisher = {mathdoc},
volume = {120},
number = {1},
year = {1996},
doi = {10.4064/sm-120-1-61-74},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-61-74/}
}
TY - JOUR AU - Robert Deville AU - AU - TI - Analytic and $C^k$ approximations of norms in separable Banach spaces JO - Studia Mathematica PY - 1996 SP - 61 EP - 74 VL - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-61-74/ DO - 10.4064/sm-120-1-61-74 LA - en ID - 10_4064_sm_120_1_61_74 ER -
Robert Deville; ; . Analytic and $C^k$ approximations of norms in separable Banach spaces. Studia Mathematica, Tome 120 (1996) no. 1, pp. 61-74. doi: 10.4064/sm-120-1-61-74
Cité par Sources :