Analytic and $C^k$ approximations of norms in separable Banach spaces
Studia Mathematica, Tome 120 (1996) no. 1, pp. 61-74

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that in separable Hilbert spaces, in $ℓ_{p}(ℕ)$ for p an even integer, and in $L_{p}[0,1]$ for p an even integer, every equivalent norm can be approximated uniformly on bounded sets by analytic norms. In $ℓ_{p}(ℕ)$ and in $L_{p}[0,1]$ for p ∉ ℕ (resp. for p an odd integer), every equivalent norm can be approximated uniformly on bounded sets by $C^[p]}$-smooth norms (resp. by $C^{p-1}$-smooth norms).
DOI : 10.4064/sm-120-1-61-74
Keywords: analytic norm, approximation, convex function, geometry of Banach spaces

Robert Deville 1 ;  1 ;  1

1
@article{10_4064_sm_120_1_61_74,
     author = {Robert Deville and   and  },
     title = {Analytic and $C^k$ approximations of norms in separable {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-120-1-61-74},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-61-74/}
}
TY  - JOUR
AU  - Robert Deville
AU  -  
AU  -  
TI  - Analytic and $C^k$ approximations of norms in separable Banach spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 61
EP  - 74
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-61-74/
DO  - 10.4064/sm-120-1-61-74
LA  - en
ID  - 10_4064_sm_120_1_61_74
ER  - 
%0 Journal Article
%A Robert Deville
%A  
%A  
%T Analytic and $C^k$ approximations of norms in separable Banach spaces
%J Studia Mathematica
%D 1996
%P 61-74
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-61-74/
%R 10.4064/sm-120-1-61-74
%G en
%F 10_4064_sm_120_1_61_74
Robert Deville;  ;  . Analytic and $C^k$ approximations of norms in separable Banach spaces. Studia Mathematica, Tome 120 (1996) no. 1, pp. 61-74. doi: 10.4064/sm-120-1-61-74

Cité par Sources :