The bundle convergence in von Neumann algebras and their $L_2$-spaces
Studia Mathematica, Tome 120 (1996) no. 1, pp. 23-46

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.
DOI : 10.4064/sm-120-1-23-46

Ewa Hensz 1 ; Ryszard Jajte 1 ; Adam Paszkiewicz 1

1
@article{10_4064_sm_120_1_23_46,
     author = {Ewa Hensz and Ryszard Jajte and Adam Paszkiewicz},
     title = {The bundle convergence in von {Neumann} algebras and their $L_2$-spaces},
     journal = {Studia Mathematica},
     pages = {23--46},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-120-1-23-46},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-23-46/}
}
TY  - JOUR
AU  - Ewa Hensz
AU  - Ryszard Jajte
AU  - Adam Paszkiewicz
TI  - The bundle convergence in von Neumann algebras and their $L_2$-spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 23
EP  - 46
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-23-46/
DO  - 10.4064/sm-120-1-23-46
LA  - en
ID  - 10_4064_sm_120_1_23_46
ER  - 
%0 Journal Article
%A Ewa Hensz
%A Ryszard Jajte
%A Adam Paszkiewicz
%T The bundle convergence in von Neumann algebras and their $L_2$-spaces
%J Studia Mathematica
%D 1996
%P 23-46
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-23-46/
%R 10.4064/sm-120-1-23-46
%G en
%F 10_4064_sm_120_1_23_46
Ewa Hensz; Ryszard Jajte; Adam Paszkiewicz. The bundle convergence in von Neumann algebras and their $L_2$-spaces. Studia Mathematica, Tome 120 (1996) no. 1, pp. 23-46. doi: 10.4064/sm-120-1-23-46

Cité par Sources :