Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
Studia Mathematica, Tome 120 (1996) no. 1, pp. 1-22
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a higher integrability result - similar to Gehring's lemma - for the metric space associated with a family of Lipschitz continuous vector fields by means of sub-unit curves. Applications are given to show the higher integrability of the gradient of minimizers of some noncoercive variational functionals.
@article{10_4064_sm_120_1_1_22,
author = {Bruno Franchi and },
title = {Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals},
journal = {Studia Mathematica},
pages = {1--22},
publisher = {mathdoc},
volume = {120},
number = {1},
year = {1996},
doi = {10.4064/sm-120-1-1-22},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-1-22/}
}
TY - JOUR AU - Bruno Franchi AU - TI - Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals JO - Studia Mathematica PY - 1996 SP - 1 EP - 22 VL - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-1-22/ DO - 10.4064/sm-120-1-1-22 LA - en ID - 10_4064_sm_120_1_1_22 ER -
%0 Journal Article %A Bruno Franchi %A %T Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals %J Studia Mathematica %D 1996 %P 1-22 %V 120 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-1-22/ %R 10.4064/sm-120-1-1-22 %G en %F 10_4064_sm_120_1_1_22
Bruno Franchi; . Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals. Studia Mathematica, Tome 120 (1996) no. 1, pp. 1-22. doi: 10.4064/sm-120-1-1-22
Cité par Sources :