Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
Studia Mathematica, Tome 120 (1996) no. 1, pp. 1-22

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a higher integrability result - similar to Gehring's lemma - for the metric space associated with a family of Lipschitz continuous vector fields by means of sub-unit curves. Applications are given to show the higher integrability of the gradient of minimizers of some noncoercive variational functionals.
DOI : 10.4064/sm-120-1-1-22

Bruno Franchi 1 ;  1

1
@article{10_4064_sm_120_1_1_22,
     author = {Bruno Franchi and  },
     title = {Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals},
     journal = {Studia Mathematica},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {120},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-120-1-1-22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-1-22/}
}
TY  - JOUR
AU  - Bruno Franchi
AU  -  
TI  - Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
JO  - Studia Mathematica
PY  - 1996
SP  - 1
EP  - 22
VL  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-1-22/
DO  - 10.4064/sm-120-1-1-22
LA  - en
ID  - 10_4064_sm_120_1_1_22
ER  - 
%0 Journal Article
%A Bruno Franchi
%A  
%T Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
%J Studia Mathematica
%D 1996
%P 1-22
%V 120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-120-1-1-22/
%R 10.4064/sm-120-1-1-22
%G en
%F 10_4064_sm_120_1_1_22
Bruno Franchi;  . Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals. Studia Mathematica, Tome 120 (1996) no. 1, pp. 1-22. doi: 10.4064/sm-120-1-1-22

Cité par Sources :