A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.
Studia Mathematica, Tome 119 (1996) no. 3, pp. 219-246

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with $A_∞$ weights via a smooth kernel which satisfies "minimal" moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.
DOI : 10.4064/sm-119-3-219-246
Keywords: Besov-Lipschitz space, Triebel-Lizorkin space, Littlewood-Paley function, Calderón representation theorem, $A_∞$ weight

H. -Q. Bui 1 ;  1 ;  1

1
@article{10_4064_sm_119_3_219_246,
     author = {H. -Q. Bui and   and  },
     title = {A maximal function characterization of weighted {Besov-Lipschitz} and {Triebel-Lizorkin} spaces.},
     journal = {Studia Mathematica},
     pages = {219--246},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-119-3-219-246},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-3-219-246/}
}
TY  - JOUR
AU  - H. -Q. Bui
AU  -  
AU  -  
TI  - A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.
JO  - Studia Mathematica
PY  - 1996
SP  - 219
EP  - 246
VL  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-3-219-246/
DO  - 10.4064/sm-119-3-219-246
LA  - en
ID  - 10_4064_sm_119_3_219_246
ER  - 
%0 Journal Article
%A H. -Q. Bui
%A  
%A  
%T A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.
%J Studia Mathematica
%D 1996
%P 219-246
%V 119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-3-219-246/
%R 10.4064/sm-119-3-219-246
%G en
%F 10_4064_sm_119_3_219_246
H. -Q. Bui;  ;  . A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.. Studia Mathematica, Tome 119 (1996) no. 3, pp. 219-246. doi: 10.4064/sm-119-3-219-246

Cité par Sources :