Regularity properties of singular integral operators
Studia Mathematica, Tome 119 (1996) no. 3, pp. 199-217

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For s>0, we consider bounded linear operators from $D(ℝ^n)$ into $D'(ℝ^n)$ whose kernels K satisfy the conditions $|∂^{γ}_{x}K(x,y)| ≤ C_{γ}|x-y|^{-n+s-|γ|}$ for x≠y, |γ|≤ [s]+1, $|∇_{y} ∂^{γ}_{x} K(x,y)| ≤ C_{γ}|x-y|^{-n+s-|γ|-1}$ for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from $L^2(ℝ^n)$ into the homogeneous Sobolev space $Ḣ^s(ℝ^n)$. This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.
DOI : 10.4064/sm-119-3-199-217

Abdellah Youssfi 1

1
@article{10_4064_sm_119_3_199_217,
     author = {Abdellah Youssfi},
     title = {Regularity properties of singular integral operators},
     journal = {Studia Mathematica},
     pages = {199--217},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-119-3-199-217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-3-199-217/}
}
TY  - JOUR
AU  - Abdellah Youssfi
TI  - Regularity properties of singular integral operators
JO  - Studia Mathematica
PY  - 1996
SP  - 199
EP  - 217
VL  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-3-199-217/
DO  - 10.4064/sm-119-3-199-217
LA  - en
ID  - 10_4064_sm_119_3_199_217
ER  - 
%0 Journal Article
%A Abdellah Youssfi
%T Regularity properties of singular integral operators
%J Studia Mathematica
%D 1996
%P 199-217
%V 119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-3-199-217/
%R 10.4064/sm-119-3-199-217
%G en
%F 10_4064_sm_119_3_199_217
Abdellah Youssfi. Regularity properties of singular integral operators. Studia Mathematica, Tome 119 (1996) no. 3, pp. 199-217. doi: 10.4064/sm-119-3-199-217

Cité par Sources :