On differentiation of integrals with respect to bases of convex sets.
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 119 (1996) no. 2, pp. 99-108
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Differentiation of integrals of functions from the class $Lip(1,1)(I^2)$ with respect to the basis of convex sets is established. An estimate of the rate of differentiation is given. It is also shown that there exist functions in $Lip(1,1)(I^N)$, N ≥ 3, and $H^{ω}_{1}(I^2)$ with ω(δ)/δ → ∞ as δ → +0 whose integrals are not differentiated with respect to the bases of convex sets in the corresponding dimension.
            
            
            
          
        
      @article{10_4064_sm_119_2_99_108,
     author = {A. M. Stokolos},
     title = {On differentiation of integrals with respect to bases of convex sets.},
     journal = {Studia Mathematica},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-119-2-99-108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-99-108/}
}
                      
                      
                    TY - JOUR AU - A. M. Stokolos TI - On differentiation of integrals with respect to bases of convex sets. JO - Studia Mathematica PY - 1996 SP - 99 EP - 108 VL - 119 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-99-108/ DO - 10.4064/sm-119-2-99-108 LA - en ID - 10_4064_sm_119_2_99_108 ER -
A. M. Stokolos. On differentiation of integrals with respect to bases of convex sets.. Studia Mathematica, Tome 119 (1996) no. 2, pp. 99-108. doi: 10.4064/sm-119-2-99-108
Cité par Sources :