A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.
Studia Mathematica, Tome 119 (1996) no. 2, pp. 195-198

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct two examples of complete multiplicatively convex algebras with the property that all their maximal commutative subalgebras and consequently all commutative closed subalgebras are Banach algebras. One of them is non-metrizable and the other is metrizable and non-Banach. This solves Problems 12-16 and 22-24 of [7].
DOI : 10.4064/sm-119-2-195-198

W. Żelazko 1

1
@article{10_4064_sm_119_2_195_198,
     author = {W. \.Zelazko},
     title = {A {non-Banach} in-convex algebra all of whose closed commutative subalgebras are {Banach} algebras.},
     journal = {Studia Mathematica},
     pages = {195--198},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-119-2-195-198},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-195-198/}
}
TY  - JOUR
AU  - W. Żelazko
TI  - A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.
JO  - Studia Mathematica
PY  - 1996
SP  - 195
EP  - 198
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-195-198/
DO  - 10.4064/sm-119-2-195-198
LA  - en
ID  - 10_4064_sm_119_2_195_198
ER  - 
%0 Journal Article
%A W. Żelazko
%T A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.
%J Studia Mathematica
%D 1996
%P 195-198
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-195-198/
%R 10.4064/sm-119-2-195-198
%G en
%F 10_4064_sm_119_2_195_198
W. Żelazko. A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.. Studia Mathematica, Tome 119 (1996) no. 2, pp. 195-198. doi: 10.4064/sm-119-2-195-198

Cité par Sources :