A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.
Studia Mathematica, Tome 119 (1996) no. 2, pp. 195-198
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct two examples of complete multiplicatively convex algebras with the property that all their maximal commutative subalgebras and consequently all commutative closed subalgebras are Banach algebras. One of them is non-metrizable and the other is metrizable and non-Banach. This solves Problems 12-16 and 22-24 of [7].
@article{10_4064_sm_119_2_195_198,
author = {W. \.Zelazko},
title = {A {non-Banach} in-convex algebra all of whose closed commutative subalgebras are {Banach} algebras.},
journal = {Studia Mathematica},
pages = {195--198},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {1996},
doi = {10.4064/sm-119-2-195-198},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-195-198/}
}
TY - JOUR AU - W. Żelazko TI - A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras. JO - Studia Mathematica PY - 1996 SP - 195 EP - 198 VL - 119 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-195-198/ DO - 10.4064/sm-119-2-195-198 LA - en ID - 10_4064_sm_119_2_195_198 ER -
%0 Journal Article %A W. Żelazko %T A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras. %J Studia Mathematica %D 1996 %P 195-198 %V 119 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-195-198/ %R 10.4064/sm-119-2-195-198 %G en %F 10_4064_sm_119_2_195_198
W. Żelazko. A non-Banach in-convex algebra all of whose closed commutative subalgebras are Banach algebras.. Studia Mathematica, Tome 119 (1996) no. 2, pp. 195-198. doi: 10.4064/sm-119-2-195-198
Cité par Sources :