On the axiomatic theory of spectrum II
Studia Mathematica, Tome 119 (1996) no. 2, pp. 129-147

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
DOI : 10.4064/sm-119-2-129-147
Keywords: spectral mapping theorem, ascent, descent, semiregular operators, quasi-Fredholm operators

M. Mbekhta 1

1
@article{10_4064_sm_119_2_129_147,
     author = {M. Mbekhta},
     title = {On the axiomatic theory of spectrum {II}},
     journal = {Studia Mathematica},
     pages = {129--147},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-119-2-129-147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-129-147/}
}
TY  - JOUR
AU  - M. Mbekhta
TI  - On the axiomatic theory of spectrum II
JO  - Studia Mathematica
PY  - 1996
SP  - 129
EP  - 147
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-129-147/
DO  - 10.4064/sm-119-2-129-147
LA  - en
ID  - 10_4064_sm_119_2_129_147
ER  - 
%0 Journal Article
%A M. Mbekhta
%T On the axiomatic theory of spectrum II
%J Studia Mathematica
%D 1996
%P 129-147
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-129-147/
%R 10.4064/sm-119-2-129-147
%G en
%F 10_4064_sm_119_2_129_147
M. Mbekhta. On the axiomatic theory of spectrum II. Studia Mathematica, Tome 119 (1996) no. 2, pp. 129-147. doi: 10.4064/sm-119-2-129-147

Cité par Sources :