On the axiomatic theory of spectrum II
Studia Mathematica, Tome 119 (1996) no. 2, pp. 129-147
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a survey of results concerning various classes of bounded linear operators in a Banach space defined by means of kernels and ranges. We show that many of these classes define a spectrum that satisfies the spectral mapping property.
Keywords:
spectral mapping theorem, ascent, descent, semiregular operators, quasi-Fredholm operators
Affiliations des auteurs :
M. Mbekhta 1
@article{10_4064_sm_119_2_129_147,
author = {M. Mbekhta},
title = {On the axiomatic theory of spectrum {II}},
journal = {Studia Mathematica},
pages = {129--147},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {1996},
doi = {10.4064/sm-119-2-129-147},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-129-147/}
}
M. Mbekhta. On the axiomatic theory of spectrum II. Studia Mathematica, Tome 119 (1996) no. 2, pp. 129-147. doi: 10.4064/sm-119-2-129-147
Cité par Sources :