On the axiomatic theory of spectrum
Studia Mathematica, Tome 119 (1996) no. 2, pp. 109-128

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

There are a number of spectra studied in the literature which do not fit into the axiomatic theory of Żelazko. This paper is an attempt to give an axiomatic theory for these spectra, which, apart from the usual types of spectra, like one-sided, approximate point or essential spectra, include also the local spectra, the Browder spectrum and various versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular or essentially semiregular).
DOI : 10.4064/sm-119-2-109-128
Keywords: axiomatic theory of spectrum, local spectrum, semiregular operators

1 ; V. Müller 1

1
@article{10_4064_sm_119_2_109_128,
     author = {  and V. M\"uller},
     title = {On the axiomatic theory of spectrum},
     journal = {Studia Mathematica},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-119-2-109-128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-109-128/}
}
TY  - JOUR
AU  -  
AU  - V. Müller
TI  - On the axiomatic theory of spectrum
JO  - Studia Mathematica
PY  - 1996
SP  - 109
EP  - 128
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-109-128/
DO  - 10.4064/sm-119-2-109-128
LA  - en
ID  - 10_4064_sm_119_2_109_128
ER  - 
%0 Journal Article
%A  
%A V. Müller
%T On the axiomatic theory of spectrum
%J Studia Mathematica
%D 1996
%P 109-128
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-2-109-128/
%R 10.4064/sm-119-2-109-128
%G en
%F 10_4064_sm_119_2_109_128
 ; V. Müller. On the axiomatic theory of spectrum. Studia Mathematica, Tome 119 (1996) no. 2, pp. 109-128. doi: 10.4064/sm-119-2-109-128

Cité par Sources :