On generalized Bergman spaces
Studia Mathematica, Tome 119 (1996) no. 1, pp. 77-95

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying $ʃ_{0}^{1} (ʃ_{0}^{2π} |f(re^{iφ})|^p dφ)^{q/p} dμ(r) ∞$.
DOI : 10.4064/sm-119-1-77-95

Wolfgang Lusky 1

1
@article{10_4064_sm_119_1_77_95,
     author = {Wolfgang Lusky},
     title = {On generalized {Bergman} spaces},
     journal = {Studia Mathematica},
     pages = {77--95},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-119-1-77-95},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-77-95/}
}
TY  - JOUR
AU  - Wolfgang Lusky
TI  - On generalized Bergman spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 77
EP  - 95
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-77-95/
DO  - 10.4064/sm-119-1-77-95
LA  - en
ID  - 10_4064_sm_119_1_77_95
ER  - 
%0 Journal Article
%A Wolfgang Lusky
%T On generalized Bergman spaces
%J Studia Mathematica
%D 1996
%P 77-95
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-77-95/
%R 10.4064/sm-119-1-77-95
%G en
%F 10_4064_sm_119_1_77_95
Wolfgang Lusky. On generalized Bergman spaces. Studia Mathematica, Tome 119 (1996) no. 1, pp. 77-95. doi: 10.4064/sm-119-1-77-95

Cité par Sources :