On generalized Bergman spaces
Studia Mathematica, Tome 119 (1996) no. 1, pp. 77-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying $ʃ_{0}^{1} (ʃ_{0}^{2π} |f(re^{iφ})|^p dφ)^{q/p} dμ(r) ∞$.
@article{10_4064_sm_119_1_77_95,
author = {Wolfgang Lusky},
title = {On generalized {Bergman} spaces},
journal = {Studia Mathematica},
pages = {77--95},
publisher = {mathdoc},
volume = {119},
number = {1},
year = {1996},
doi = {10.4064/sm-119-1-77-95},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-77-95/}
}
Wolfgang Lusky. On generalized Bergman spaces. Studia Mathematica, Tome 119 (1996) no. 1, pp. 77-95. doi: 10.4064/sm-119-1-77-95
Cité par Sources :