Decomposable embeddings, complete trajectories, and invariant subspaces
Studia Mathematica, Tome 119 (1996) no. 1, pp. 65-76

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We produce closed nontrivial invariant subspaces for closed (possibly unbounded) linear operators, A, on a Banach space, that may be embedded between decomposable operators on spaces with weaker and stronger topologies. We show that this can be done under many conditions on orbits, including when both A and A* have nontrivial non-quasi-analytic complete trajectories, and when both A and A* generate bounded semigroups that are not stable.
DOI : 10.4064/sm-119-1-65-76

Ralph deLaubenfels 1 ; Vũ Quôc Phóng 1

1
@article{10_4064_sm_119_1_65_76,
     author = {Ralph deLaubenfels and V\~{u} Qu\^oc Ph\'ong},
     title = {Decomposable embeddings, complete trajectories, and invariant subspaces},
     journal = {Studia Mathematica},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-119-1-65-76},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-65-76/}
}
TY  - JOUR
AU  - Ralph deLaubenfels
AU  - Vũ Quôc Phóng
TI  - Decomposable embeddings, complete trajectories, and invariant subspaces
JO  - Studia Mathematica
PY  - 1996
SP  - 65
EP  - 76
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-65-76/
DO  - 10.4064/sm-119-1-65-76
LA  - en
ID  - 10_4064_sm_119_1_65_76
ER  - 
%0 Journal Article
%A Ralph deLaubenfels
%A Vũ Quôc Phóng
%T Decomposable embeddings, complete trajectories, and invariant subspaces
%J Studia Mathematica
%D 1996
%P 65-76
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-65-76/
%R 10.4064/sm-119-1-65-76
%G en
%F 10_4064_sm_119_1_65_76
Ralph deLaubenfels; Vũ Quôc Phóng. Decomposable embeddings, complete trajectories, and invariant subspaces. Studia Mathematica, Tome 119 (1996) no. 1, pp. 65-76. doi: 10.4064/sm-119-1-65-76

Cité par Sources :