A compact set without Markov's property but with an extension operator for $C^∞$-functions
Studia Mathematica, Tome 119 (1996) no. 1, pp. 27-35
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^{∞}[0,1]$. At the same time, Markov's inequality is not satisfied for certain polynomials on K.
@article{10_4064_sm_119_1_27_35,
author = {Alexander Goncharov},
title = {A compact set without {Markov's} property but with an extension operator for $C^\ensuremath{\infty}$-functions},
journal = {Studia Mathematica},
pages = {27--35},
year = {1996},
volume = {119},
number = {1},
doi = {10.4064/sm-119-1-27-35},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-27-35/}
}
TY - JOUR AU - Alexander Goncharov TI - A compact set without Markov's property but with an extension operator for $C^∞$-functions JO - Studia Mathematica PY - 1996 SP - 27 EP - 35 VL - 119 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-27-35/ DO - 10.4064/sm-119-1-27-35 LA - en ID - 10_4064_sm_119_1_27_35 ER -
%0 Journal Article %A Alexander Goncharov %T A compact set without Markov's property but with an extension operator for $C^∞$-functions %J Studia Mathematica %D 1996 %P 27-35 %V 119 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-27-35/ %R 10.4064/sm-119-1-27-35 %G en %F 10_4064_sm_119_1_27_35
Alexander Goncharov. A compact set without Markov's property but with an extension operator for $C^∞$-functions. Studia Mathematica, Tome 119 (1996) no. 1, pp. 27-35. doi: 10.4064/sm-119-1-27-35
Cité par Sources :