A compact set without Markov's property but with an extension operator for $C^∞$-functions
Studia Mathematica, Tome 119 (1996) no. 1, pp. 27-35 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: ℇ(K) → C^{∞}[0,1]$. At the same time, Markov's inequality is not satisfied for certain polynomials on K.
@article{10_4064_sm_119_1_27_35,
     author = {Alexander Goncharov},
     title = {A compact set without {Markov's} property but with an extension operator for $C^\ensuremath{\infty}$-functions},
     journal = {Studia Mathematica},
     pages = {27--35},
     year = {1996},
     volume = {119},
     number = {1},
     doi = {10.4064/sm-119-1-27-35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-27-35/}
}
TY  - JOUR
AU  - Alexander Goncharov
TI  - A compact set without Markov's property but with an extension operator for $C^∞$-functions
JO  - Studia Mathematica
PY  - 1996
SP  - 27
EP  - 35
VL  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-27-35/
DO  - 10.4064/sm-119-1-27-35
LA  - en
ID  - 10_4064_sm_119_1_27_35
ER  - 
%0 Journal Article
%A Alexander Goncharov
%T A compact set without Markov's property but with an extension operator for $C^∞$-functions
%J Studia Mathematica
%D 1996
%P 27-35
%V 119
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-27-35/
%R 10.4064/sm-119-1-27-35
%G en
%F 10_4064_sm_119_1_27_35
Alexander Goncharov. A compact set without Markov's property but with an extension operator for $C^∞$-functions. Studia Mathematica, Tome 119 (1996) no. 1, pp. 27-35. doi: 10.4064/sm-119-1-27-35

Cité par Sources :