On asymptotic density and uniformly distributed sequences
Studia Mathematica, Tome 119 (1996) no. 1, pp. 17-26 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Assuming Martin's axiom we show that if X is a dyadic space of weight at most continuum then every Radon measure on X admits a uniformly distributed sequence. This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary result concerning finitely additive measures on ω and asymptotic density.
@article{10_4064_sm_119_1_17_26,
     author = {Ryszard Frankiewicz and  },
     title = {On asymptotic density and uniformly distributed sequences},
     journal = {Studia Mathematica},
     pages = {17--26},
     year = {1996},
     volume = {119},
     number = {1},
     doi = {10.4064/sm-119-1-17-26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-17-26/}
}
TY  - JOUR
AU  - Ryszard Frankiewicz
AU  -  
TI  - On asymptotic density and uniformly distributed sequences
JO  - Studia Mathematica
PY  - 1996
SP  - 17
EP  - 26
VL  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-17-26/
DO  - 10.4064/sm-119-1-17-26
LA  - en
ID  - 10_4064_sm_119_1_17_26
ER  - 
%0 Journal Article
%A Ryszard Frankiewicz
%A  
%T On asymptotic density and uniformly distributed sequences
%J Studia Mathematica
%D 1996
%P 17-26
%V 119
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-17-26/
%R 10.4064/sm-119-1-17-26
%G en
%F 10_4064_sm_119_1_17_26
Ryszard Frankiewicz;  . On asymptotic density and uniformly distributed sequences. Studia Mathematica, Tome 119 (1996) no. 1, pp. 17-26. doi: 10.4064/sm-119-1-17-26

Cité par Sources :