On asymptotic density and uniformly distributed sequences
Studia Mathematica, Tome 119 (1996) no. 1, pp. 17-26
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Assuming Martin's axiom we show that if X is a dyadic space of weight at most continuum then every Radon measure on X admits a uniformly distributed sequence. This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary result concerning finitely additive measures on ω and asymptotic density.
@article{10_4064_sm_119_1_17_26,
author = {Ryszard Frankiewicz and },
title = {On asymptotic density and uniformly distributed sequences},
journal = {Studia Mathematica},
pages = {17--26},
year = {1996},
volume = {119},
number = {1},
doi = {10.4064/sm-119-1-17-26},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-17-26/}
}
TY - JOUR AU - Ryszard Frankiewicz AU - TI - On asymptotic density and uniformly distributed sequences JO - Studia Mathematica PY - 1996 SP - 17 EP - 26 VL - 119 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-119-1-17-26/ DO - 10.4064/sm-119-1-17-26 LA - en ID - 10_4064_sm_119_1_17_26 ER -
Ryszard Frankiewicz; . On asymptotic density and uniformly distributed sequences. Studia Mathematica, Tome 119 (1996) no. 1, pp. 17-26. doi: 10.4064/sm-119-1-17-26
Cité par Sources :