Tail and moment estimates for sums of independent random vectors with logarithmically concave tails
Studia Mathematica, Tome 118 (1996) no. 3, pp. 301-304

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X_i$ be a sequence of independent symmetric real random variables with logarithmically concave tails. We consider a variable $X = ∑v_{i}X_{i}$, where $v_i$ are vectors of some Banach space. We derive approximate formulas for the tail and moments of ∥X∥. The estimates are exact up to some universal constant and they extend results of S. J. Dilworth and S. J. Montgomery-Smith [1] for the Rademacher sequence and E. D. Gluskin and S. Kwapień [2] for real coefficients.
DOI : 10.4064/sm-118-3-301-304

Rafał Latała 1

1
@article{10_4064_sm_118_3_301_304,
     author = {Rafa{\l} Lata{\l}a},
     title = {Tail and moment estimates for sums of independent random vectors with logarithmically concave tails},
     journal = {Studia Mathematica},
     pages = {301--304},
     publisher = {mathdoc},
     volume = {118},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-118-3-301-304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-301-304/}
}
TY  - JOUR
AU  - Rafał Latała
TI  - Tail and moment estimates for sums of independent random vectors with logarithmically concave tails
JO  - Studia Mathematica
PY  - 1996
SP  - 301
EP  - 304
VL  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-301-304/
DO  - 10.4064/sm-118-3-301-304
LA  - en
ID  - 10_4064_sm_118_3_301_304
ER  - 
%0 Journal Article
%A Rafał Latała
%T Tail and moment estimates for sums of independent random vectors with logarithmically concave tails
%J Studia Mathematica
%D 1996
%P 301-304
%V 118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-301-304/
%R 10.4064/sm-118-3-301-304
%G en
%F 10_4064_sm_118_3_301_304
Rafał Latała. Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Mathematica, Tome 118 (1996) no. 3, pp. 301-304. doi: 10.4064/sm-118-3-301-304

Cité par Sources :