Tail and moment estimates for sums of independent random vectors with logarithmically concave tails
Studia Mathematica, Tome 118 (1996) no. 3, pp. 301-304
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X_i$ be a sequence of independent symmetric real random variables with logarithmically concave tails. We consider a variable $X = ∑v_{i}X_{i}$, where $v_i$ are vectors of some Banach space. We derive approximate formulas for the tail and moments of ∥X∥. The estimates are exact up to some universal constant and they extend results of S. J. Dilworth and S. J. Montgomery-Smith [1] for the Rademacher sequence and E. D. Gluskin and S. Kwapień [2] for real coefficients.
@article{10_4064_sm_118_3_301_304,
author = {Rafa{\l} Lata{\l}a},
title = {Tail and moment estimates for sums of independent random vectors with logarithmically concave tails},
journal = {Studia Mathematica},
pages = {301--304},
publisher = {mathdoc},
volume = {118},
number = {3},
year = {1996},
doi = {10.4064/sm-118-3-301-304},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-301-304/}
}
TY - JOUR AU - Rafał Latała TI - Tail and moment estimates for sums of independent random vectors with logarithmically concave tails JO - Studia Mathematica PY - 1996 SP - 301 EP - 304 VL - 118 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-301-304/ DO - 10.4064/sm-118-3-301-304 LA - en ID - 10_4064_sm_118_3_301_304 ER -
%0 Journal Article %A Rafał Latała %T Tail and moment estimates for sums of independent random vectors with logarithmically concave tails %J Studia Mathematica %D 1996 %P 301-304 %V 118 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-301-304/ %R 10.4064/sm-118-3-301-304 %G en %F 10_4064_sm_118_3_301_304
Rafał Latała. Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Mathematica, Tome 118 (1996) no. 3, pp. 301-304. doi: 10.4064/sm-118-3-301-304
Cité par Sources :