Uniform convergence of double trigonometric series
Studia Mathematica, Tome 118 (1996) no. 3, pp. 245-259

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that under certain conditions on ${c_{jk}}$, the rectangular partial sums $s_{mn}(x,y)$ converge uniformly on $T^2$. These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is $∑_{|k|= n}^∞ |Δc_k| = o(1/n)$ (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: $nc_{n} = o(1)$ as n → ∞. As a consequence, our result generalizes those of Chaundy-Jolliffe [CJ], Jolliffe [J], Nurcombe [N], and Xie-Zhou [XZ].
DOI : 10.4064/sm-118-3-245-259

Chang-Pao Chen 1

1
@article{10_4064_sm_118_3_245_259,
     author = {Chang-Pao Chen},
     title = {Uniform convergence of double trigonometric series},
     journal = {Studia Mathematica},
     pages = {245--259},
     publisher = {mathdoc},
     volume = {118},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-118-3-245-259},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-245-259/}
}
TY  - JOUR
AU  - Chang-Pao Chen
TI  - Uniform convergence of double trigonometric series
JO  - Studia Mathematica
PY  - 1996
SP  - 245
EP  - 259
VL  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-245-259/
DO  - 10.4064/sm-118-3-245-259
LA  - en
ID  - 10_4064_sm_118_3_245_259
ER  - 
%0 Journal Article
%A Chang-Pao Chen
%T Uniform convergence of double trigonometric series
%J Studia Mathematica
%D 1996
%P 245-259
%V 118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-3-245-259/
%R 10.4064/sm-118-3-245-259
%G en
%F 10_4064_sm_118_3_245_259
Chang-Pao Chen. Uniform convergence of double trigonometric series. Studia Mathematica, Tome 118 (1996) no. 3, pp. 245-259. doi: 10.4064/sm-118-3-245-259

Cité par Sources :