A characterization of probability measures by f-moments
Studia Mathematica, Tome 118 (1996) no. 2, pp. 185-204 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Given a real-valued continuous function ƒ on the half-line [0,∞) we denote by P*(ƒ) the set of all probability measures μ on [0,∞) with finite ƒ-moments $ʃ_{0}^{∞} ƒ(x)μ^{*n}(dx)$ (n = 1,2...). A function ƒ is said to have the identification property} if probability measures from P*(ƒ) are uniquely determined by their ƒ-moments. A function ƒ is said to be a Bernstein function} if it is infinitely differentiable on the open half-line (0,∞) and $(-1)^{n} ƒ^{(n+1)}(x)$ is completely monotone for some nonnegative integer n. The purpose of this paper is to give a necessary and sufficient condition in terms of the representing measures for Bernstein functions to have the identification property.
DOI : 10.4064/sm-118-2-185-204
Keywords: Bernstein functions, Laplace transform, moments, identification properties
@article{10_4064_sm_118_2_185_204,
     author = {K. Urbanik},
     title = {A characterization of probability measures by f-moments},
     journal = {Studia Mathematica},
     pages = {185--204},
     year = {1996},
     volume = {118},
     number = {2},
     doi = {10.4064/sm-118-2-185-204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-185-204/}
}
TY  - JOUR
AU  - K. Urbanik
TI  - A characterization of probability measures by f-moments
JO  - Studia Mathematica
PY  - 1996
SP  - 185
EP  - 204
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-185-204/
DO  - 10.4064/sm-118-2-185-204
LA  - en
ID  - 10_4064_sm_118_2_185_204
ER  - 
%0 Journal Article
%A K. Urbanik
%T A characterization of probability measures by f-moments
%J Studia Mathematica
%D 1996
%P 185-204
%V 118
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-185-204/
%R 10.4064/sm-118-2-185-204
%G en
%F 10_4064_sm_118_2_185_204
K. Urbanik. A characterization of probability measures by f-moments. Studia Mathematica, Tome 118 (1996) no. 2, pp. 185-204. doi: 10.4064/sm-118-2-185-204

Cité par Sources :