Two-parameter Hardy-Littlewood inequalities
Studia Mathematica, Tome 118 (1996) no. 2, pp. 175-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The inequality (*) $(∑_{|n|=1}^{∞} ∑_{|m|=1}^{∞} |nm|^{p-2} |f̂(n,m)|^p)^{1/p} ≤ C_p ∥ƒ∥_{H_p}$ (0 p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space $H_p$ on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in $L_p$ whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from $H_1$ converges a.e. and also in $L_1$ norm to that function.
Keywords:
Hardy spaces, rectangle p-atom, atomic decomposition, Hardy-Littlewood inequalities
Affiliations des auteurs :
Ferenc Weisz 1
@article{10_4064_sm_118_2_175_184,
author = {Ferenc Weisz},
title = {Two-parameter {Hardy-Littlewood} inequalities},
journal = {Studia Mathematica},
pages = {175--184},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {1996},
doi = {10.4064/sm-118-2-175-184},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-175-184/}
}
Ferenc Weisz. Two-parameter Hardy-Littlewood inequalities. Studia Mathematica, Tome 118 (1996) no. 2, pp. 175-184. doi: 10.4064/sm-118-2-175-184
Cité par Sources :