Two-parameter Hardy-Littlewood inequalities
Studia Mathematica, Tome 118 (1996) no. 2, pp. 175-184

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The inequality (*) $(∑_{|n|=1}^{∞} ∑_{|m|=1}^{∞} |nm|^{p-2} |f̂(n,m)|^p)^{1/p} ≤ C_p ∥ƒ∥_{H_p}$ (0 p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space $H_p$ on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in $L_p$ whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from $H_1$ converges a.e. and also in $L_1$ norm to that function.
DOI : 10.4064/sm-118-2-175-184
Keywords: Hardy spaces, rectangle p-atom, atomic decomposition, Hardy-Littlewood inequalities

Ferenc Weisz 1

1
@article{10_4064_sm_118_2_175_184,
     author = {Ferenc Weisz},
     title = {Two-parameter {Hardy-Littlewood} inequalities},
     journal = {Studia Mathematica},
     pages = {175--184},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-118-2-175-184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-175-184/}
}
TY  - JOUR
AU  - Ferenc Weisz
TI  - Two-parameter Hardy-Littlewood inequalities
JO  - Studia Mathematica
PY  - 1996
SP  - 175
EP  - 184
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-175-184/
DO  - 10.4064/sm-118-2-175-184
LA  - en
ID  - 10_4064_sm_118_2_175_184
ER  - 
%0 Journal Article
%A Ferenc Weisz
%T Two-parameter Hardy-Littlewood inequalities
%J Studia Mathematica
%D 1996
%P 175-184
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-175-184/
%R 10.4064/sm-118-2-175-184
%G en
%F 10_4064_sm_118_2_175_184
Ferenc Weisz. Two-parameter Hardy-Littlewood inequalities. Studia Mathematica, Tome 118 (1996) no. 2, pp. 175-184. doi: 10.4064/sm-118-2-175-184

Cité par Sources :