Positive operator bimeasures and a noncommutative generalization
Studia Mathematica, Tome 118 (1996) no. 2, pp. 157-168

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of commuting projection-valued measures or pairs of commuting positive operator measures.
DOI : 10.4064/sm-118-2-157-168

Kari Ylinen 1

1
@article{10_4064_sm_118_2_157_168,
     author = {Kari Ylinen},
     title = {Positive operator bimeasures and a noncommutative generalization},
     journal = {Studia Mathematica},
     pages = {157--168},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-118-2-157-168},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-157-168/}
}
TY  - JOUR
AU  - Kari Ylinen
TI  - Positive operator bimeasures and a noncommutative generalization
JO  - Studia Mathematica
PY  - 1996
SP  - 157
EP  - 168
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-157-168/
DO  - 10.4064/sm-118-2-157-168
LA  - en
ID  - 10_4064_sm_118_2_157_168
ER  - 
%0 Journal Article
%A Kari Ylinen
%T Positive operator bimeasures and a noncommutative generalization
%J Studia Mathematica
%D 1996
%P 157-168
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-157-168/
%R 10.4064/sm-118-2-157-168
%G en
%F 10_4064_sm_118_2_157_168
Kari Ylinen. Positive operator bimeasures and a noncommutative generalization. Studia Mathematica, Tome 118 (1996) no. 2, pp. 157-168. doi: 10.4064/sm-118-2-157-168

Cité par Sources :