Positive operator bimeasures and a noncommutative generalization
Studia Mathematica, Tome 118 (1996) no. 2, pp. 157-168
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of commuting projection-valued measures or pairs of commuting positive operator measures.
@article{10_4064_sm_118_2_157_168,
author = {Kari Ylinen},
title = {Positive operator bimeasures and a noncommutative generalization},
journal = {Studia Mathematica},
pages = {157--168},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {1996},
doi = {10.4064/sm-118-2-157-168},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-157-168/}
}
TY - JOUR AU - Kari Ylinen TI - Positive operator bimeasures and a noncommutative generalization JO - Studia Mathematica PY - 1996 SP - 157 EP - 168 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-157-168/ DO - 10.4064/sm-118-2-157-168 LA - en ID - 10_4064_sm_118_2_157_168 ER -
Kari Ylinen. Positive operator bimeasures and a noncommutative generalization. Studia Mathematica, Tome 118 (1996) no. 2, pp. 157-168. doi: 10.4064/sm-118-2-157-168
Cité par Sources :