On Gateaux differentiable bump functions
Studia Mathematica, Tome 118 (1996) no. 2, pp. 135-143
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that the order of Gateaux smoothness of bump functions on a wide class of Banach spaces with unconditional basis is not better than that of Fréchet differentiability. It is proved as well that in the separable case this order for Banach lattices satisfying a lower p-estimate for 1≤ p 2 can be only slightly better.
@article{10_4064_sm_118_2_135_143,
author = {Francisco L. Hern\'andez},
title = {On {Gateaux} differentiable bump functions},
journal = {Studia Mathematica},
pages = {135--143},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {1996},
doi = {10.4064/sm-118-2-135-143},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-135-143/}
}
TY - JOUR AU - Francisco L. Hernández TI - On Gateaux differentiable bump functions JO - Studia Mathematica PY - 1996 SP - 135 EP - 143 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-135-143/ DO - 10.4064/sm-118-2-135-143 LA - en ID - 10_4064_sm_118_2_135_143 ER -
Francisco L. Hernández. On Gateaux differentiable bump functions. Studia Mathematica, Tome 118 (1996) no. 2, pp. 135-143. doi: 10.4064/sm-118-2-135-143
Cité par Sources :