Comparing gaussian and Rademacher cotype for operators on the space of continuous functions
Studia Mathematica, Tome 118 (1996) no. 2, pp. 101-115

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 q ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if $(∑_k ((∥Tx_k∥_F)/(√log(k+1)))^q)^{1/q} ≤ c ∥ ∑_k ɛ_{k} x_{k} ∥_{L_{2}(C(K))}$, for all sequences $(x_k)_{k∈ℕ} ⊂ C(K)$ with $(∥Tx_k∥)_{k=1}^n$ decreasing. (2) T is of Rademacher cotype q if and only if $(∑_k (∥Tx_k∥_{F} √((log(k+1))^q) )^{1/q} ≤ c ∥∑_k g_{k}x_{k}∥_{L_2(C(K))}$, for all sequences $(x_k)_{k∈ℕ} ⊂ C(K)$ with $(∥Tx_k∥)_{k=1}^n$ decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.
DOI : 10.4064/sm-118-2-101-115

Marius Junge 1

1
@article{10_4064_sm_118_2_101_115,
     author = {Marius Junge},
     title = {Comparing gaussian and {Rademacher} cotype for operators on the space of continuous functions},
     journal = {Studia Mathematica},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1996},
     doi = {10.4064/sm-118-2-101-115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-101-115/}
}
TY  - JOUR
AU  - Marius Junge
TI  - Comparing gaussian and Rademacher cotype for operators on the space of continuous functions
JO  - Studia Mathematica
PY  - 1996
SP  - 101
EP  - 115
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-101-115/
DO  - 10.4064/sm-118-2-101-115
LA  - en
ID  - 10_4064_sm_118_2_101_115
ER  - 
%0 Journal Article
%A Marius Junge
%T Comparing gaussian and Rademacher cotype for operators on the space of continuous functions
%J Studia Mathematica
%D 1996
%P 101-115
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-2-101-115/
%R 10.4064/sm-118-2-101-115
%G en
%F 10_4064_sm_118_2_101_115
Marius Junge. Comparing gaussian and Rademacher cotype for operators on the space of continuous functions. Studia Mathematica, Tome 118 (1996) no. 2, pp. 101-115. doi: 10.4064/sm-118-2-101-115

Cité par Sources :