Topological type of weakly closed subgroups in Banach spaces
Studia Mathematica, Tome 118 (1996) no. 1, pp. 49-62
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result says that nondiscrete, weakly closed, containing no nontrivial linear subspaces, additive subgroups in separable reflexive Banach spaces are homeomorphic to the complete Erdős space. Two examples of such subgroups in $ℓ^1$ which are interesting from the Banach space theory point of view are discussed.
Keywords:
additive subgroup of linear space, weakly closed, topological dimension, complete Erdős space, Lelek fan
Affiliations des auteurs :
Tadeusz Dobrowolski 1 ;  1 ;  1
@article{10_4064_sm_118_1_49_62,
author = {Tadeusz Dobrowolski and and },
title = {Topological type of weakly closed subgroups in {Banach} spaces},
journal = {Studia Mathematica},
pages = {49--62},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {1996},
doi = {10.4064/sm-118-1-49-62},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-49-62/}
}
TY - JOUR AU - Tadeusz Dobrowolski AU - AU - TI - Topological type of weakly closed subgroups in Banach spaces JO - Studia Mathematica PY - 1996 SP - 49 EP - 62 VL - 118 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-49-62/ DO - 10.4064/sm-118-1-49-62 LA - en ID - 10_4064_sm_118_1_49_62 ER -
Tadeusz Dobrowolski; ; . Topological type of weakly closed subgroups in Banach spaces. Studia Mathematica, Tome 118 (1996) no. 1, pp. 49-62. doi: 10.4064/sm-118-1-49-62
Cité par Sources :