Duality on vector-valued weighted harmonic Bergman spaces
Studia Mathematica, Tome 118 (1996) no. 1, pp. 37-47
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the duals of the spaces $A^{pα}(X)$ of harmonic functions in the unit ball of $ℝ^n$ with values in a Banach space X, belonging to the Bochner $L^p$ space with weight $(1-|x|)^α$, denoted by $L^{pα}(X)$. For 0 α p-1 we construct continuous projections onto $A^{pα}(X)$ providing a decomposition $L^{pα}(X) = A^{pα}(X) + M^{pα}(X)$. We discuss the conditions on p, α and X for which $A^{pα}(X)* = A^{qα}(X*)$ and $M^{pα}(X)* = M^{qα}(X*)$, 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.
@article{10_4064_sm_118_1_37_47,
author = {Salvador P\'erez-Esteva},
title = {Duality on vector-valued weighted harmonic {Bergman} spaces},
journal = {Studia Mathematica},
pages = {37--47},
publisher = {mathdoc},
volume = {118},
number = {1},
year = {1996},
doi = {10.4064/sm-118-1-37-47},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-37-47/}
}
TY - JOUR AU - Salvador Pérez-Esteva TI - Duality on vector-valued weighted harmonic Bergman spaces JO - Studia Mathematica PY - 1996 SP - 37 EP - 47 VL - 118 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-37-47/ DO - 10.4064/sm-118-1-37-47 LA - en ID - 10_4064_sm_118_1_37_47 ER -
Salvador Pérez-Esteva. Duality on vector-valued weighted harmonic Bergman spaces. Studia Mathematica, Tome 118 (1996) no. 1, pp. 37-47. doi: 10.4064/sm-118-1-37-47
Cité par Sources :