Duality on vector-valued weighted harmonic Bergman spaces
Studia Mathematica, Tome 118 (1996) no. 1, pp. 37-47

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the duals of the spaces $A^{pα}(X)$ of harmonic functions in the unit ball of $ℝ^n$ with values in a Banach space X, belonging to the Bochner $L^p$ space with weight $(1-|x|)^α$, denoted by $L^{pα}(X)$. For 0 α p-1 we construct continuous projections onto $A^{pα}(X)$ providing a decomposition $L^{pα}(X) = A^{pα}(X) + M^{pα}(X)$. We discuss the conditions on p, α and X for which $A^{pα}(X)* = A^{qα}(X*)$ and $M^{pα}(X)* = M^{qα}(X*)$, 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.
DOI : 10.4064/sm-118-1-37-47

Salvador Pérez-Esteva 1

1
@article{10_4064_sm_118_1_37_47,
     author = {Salvador P\'erez-Esteva},
     title = {Duality on vector-valued weighted harmonic {Bergman} spaces},
     journal = {Studia Mathematica},
     pages = {37--47},
     publisher = {mathdoc},
     volume = {118},
     number = {1},
     year = {1996},
     doi = {10.4064/sm-118-1-37-47},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-37-47/}
}
TY  - JOUR
AU  - Salvador Pérez-Esteva
TI  - Duality on vector-valued weighted harmonic Bergman spaces
JO  - Studia Mathematica
PY  - 1996
SP  - 37
EP  - 47
VL  - 118
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-37-47/
DO  - 10.4064/sm-118-1-37-47
LA  - en
ID  - 10_4064_sm_118_1_37_47
ER  - 
%0 Journal Article
%A Salvador Pérez-Esteva
%T Duality on vector-valued weighted harmonic Bergman spaces
%J Studia Mathematica
%D 1996
%P 37-47
%V 118
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-118-1-37-47/
%R 10.4064/sm-118-1-37-47
%G en
%F 10_4064_sm_118_1_37_47
Salvador Pérez-Esteva. Duality on vector-valued weighted harmonic Bergman spaces. Studia Mathematica, Tome 118 (1996) no. 1, pp. 37-47. doi: 10.4064/sm-118-1-37-47

Cité par Sources :