On subspaces of Banach spaces where every functional has a unique norm-preserving extension
Studia Mathematica, Tome 117 (1995) no. 3, pp. 289-306

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a Banach space and Y a closed subspace. We obtain simple geometric characterizations of Phelps' property U for Y in X (that every continuous linear functional g ∈ Y* has a unique norm-preserving extension f ∈ X*), which do not use the dual space X*. This enables us to give an intrinsic geometric characterization of preduals of strictly convex spaces close to the Beauzamy-Maurey-Lima-Uttersrud criterion of smoothness. This also enables us to prove that the U-property of the subspace K(E,F) of compact operators from a Banach space E to a Banach space F in the corresponding space L(E,F) of all operators implies the U-property for F in F** whenever F is isomorphic to a quotient space of E.
DOI : 10.4064/sm-117-3-289-306

Eve Oja 1 ;  1

1
@article{10_4064_sm_117_3_289_306,
     author = {Eve Oja and  },
     title = {On subspaces of {Banach} spaces where every functional has a unique norm-preserving extension},
     journal = {Studia Mathematica},
     pages = {289--306},
     publisher = {mathdoc},
     volume = {117},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-117-3-289-306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-289-306/}
}
TY  - JOUR
AU  - Eve Oja
AU  -  
TI  - On subspaces of Banach spaces where every functional has a unique norm-preserving extension
JO  - Studia Mathematica
PY  - 1995
SP  - 289
EP  - 306
VL  - 117
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-289-306/
DO  - 10.4064/sm-117-3-289-306
LA  - en
ID  - 10_4064_sm_117_3_289_306
ER  - 
%0 Journal Article
%A Eve Oja
%A  
%T On subspaces of Banach spaces where every functional has a unique norm-preserving extension
%J Studia Mathematica
%D 1995
%P 289-306
%V 117
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-289-306/
%R 10.4064/sm-117-3-289-306
%G en
%F 10_4064_sm_117_3_289_306
Eve Oja;  . On subspaces of Banach spaces where every functional has a unique norm-preserving extension. Studia Mathematica, Tome 117 (1995) no. 3, pp. 289-306. doi: 10.4064/sm-117-3-289-306

Cité par Sources :