Régularité Besov des trajectoires du processus intégral de Skorokhod
Studia Mathematica, Tome 117 (1995) no. 3, pp. 205-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${W_t : 0 ≤ t ≤ 1}$ be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process ${u_t : 0 ≤ t ≤ 1}$ belonging to the space $ℒ^{2,1}$ (see Definition II.2). The Skorokhod integral $U_t = ʃ^{t}_{0} uδW$ is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process $t ↦ U_t$. More precisely, we prove the following THEOREM III.1. (1)} If 0 α 1/2 and $u ∈ ℒ^{p,1}$ with 1/α p ∞, then a.s. $t ↦ U_{t} ∈ ℬ^{α}_{p,q}$ for all q ∈ [1,∞], and $t → U_{t} ∈ ℬ^{α,0}_{p,∞}$. (2)} For every even integer p ≥ 4, if there exists δ > 2(p+1) such that $u ∈ ℒ^{δ,2} ∩ ℒ^∞([0,1]×Ω)$, then a.s. $t ↦ U_t ∈ ℬ^{1/2}_{p,∞}$. (For the definition of the Besov spaces $ℬ^α_{p,q}$ and $ℬ^{α,0}_{p,∞}$, see Section I; for the definition of the spaces $ℒ^{p,1}$ and $ℒ^{p,2}, p ≥ 2$, see Definition II.2.) An analogous result for the classical Itô integral process has been obtained by B. Roynette in [R]. Let us finally observe that D. Nualart and E. Pardoux [NP] showed that the Skorokhod integral process $t → U_t$ admits an a.s. continuous modification, under smoothness conditions on the integrand similar to those stated in Theorem II.1 (cf. Theorems 5.2 and 5.3 of [NP]).
@article{10_4064_sm_117_3_205_223,
author = {G\'erard Lorang},
title = {R\'egularit\'e {Besov} des trajectoires du processus int\'egral de {Skorokhod}},
journal = {Studia Mathematica},
pages = {205--223},
publisher = {mathdoc},
volume = {117},
number = {3},
year = {1995},
doi = {10.4064/sm-117-3-205-223},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-205-223/}
}
TY - JOUR AU - Gérard Lorang TI - Régularité Besov des trajectoires du processus intégral de Skorokhod JO - Studia Mathematica PY - 1995 SP - 205 EP - 223 VL - 117 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-3-205-223/ DO - 10.4064/sm-117-3-205-223 LA - fr ID - 10_4064_sm_117_3_205_223 ER -
Gérard Lorang. Régularité Besov des trajectoires du processus intégral de Skorokhod. Studia Mathematica, Tome 117 (1995) no. 3, pp. 205-223. doi: 10.4064/sm-117-3-205-223
Cité par Sources :