Ergodic theory for the one-dimensional Jacobi operator
Studia Mathematica, Tome 117 (1995) no. 2, pp. 149-171
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the $L^1$-topology.
@article{10_4064_sm_117_2_149_171,
author = {Carmen N\'u\~nez and },
title = {Ergodic theory for the one-dimensional {Jacobi} operator},
journal = {Studia Mathematica},
pages = {149--171},
publisher = {mathdoc},
volume = {117},
number = {2},
year = {1995},
doi = {10.4064/sm-117-2-149-171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/}
}
TY - JOUR AU - Carmen Núñez AU - TI - Ergodic theory for the one-dimensional Jacobi operator JO - Studia Mathematica PY - 1995 SP - 149 EP - 171 VL - 117 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/ DO - 10.4064/sm-117-2-149-171 LA - en ID - 10_4064_sm_117_2_149_171 ER -
Carmen Núñez; . Ergodic theory for the one-dimensional Jacobi operator. Studia Mathematica, Tome 117 (1995) no. 2, pp. 149-171. doi: 10.4064/sm-117-2-149-171
Cité par Sources :