Ergodic theory for the one-dimensional Jacobi operator
Studia Mathematica, Tome 117 (1995) no. 2, pp. 149-171
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the $L^1$-topology.
@article{10_4064_sm_117_2_149_171,
author = {Carmen N\'u\~nez and },
title = {Ergodic theory for the one-dimensional {Jacobi} operator},
journal = {Studia Mathematica},
pages = {149--171},
year = {1995},
volume = {117},
number = {2},
doi = {10.4064/sm-117-2-149-171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/}
}
TY - JOUR AU - Carmen Núñez AU - TI - Ergodic theory for the one-dimensional Jacobi operator JO - Studia Mathematica PY - 1995 SP - 149 EP - 171 VL - 117 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/ DO - 10.4064/sm-117-2-149-171 LA - en ID - 10_4064_sm_117_2_149_171 ER -
Carmen Núñez; . Ergodic theory for the one-dimensional Jacobi operator. Studia Mathematica, Tome 117 (1995) no. 2, pp. 149-171. doi: 10.4064/sm-117-2-149-171
Cité par Sources :