Ergodic theory for the one-dimensional Jacobi operator
Studia Mathematica, Tome 117 (1995) no. 2, pp. 149-171

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the number and properties of the invariant measures under the projective flow defined by a family of one-dimensional Jacobi operators. We calculate the derivative of the Floquet coefficient on the absolutely continuous spectrum and deduce the existence of the non-tangential limit of Weyl m-functions in the $L^1$-topology.
DOI : 10.4064/sm-117-2-149-171

Carmen Núñez 1 ;  1

1
@article{10_4064_sm_117_2_149_171,
     author = {Carmen N\'u\~nez and  },
     title = {Ergodic theory for the one-dimensional {Jacobi} operator},
     journal = {Studia Mathematica},
     pages = {149--171},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-117-2-149-171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/}
}
TY  - JOUR
AU  - Carmen Núñez
AU  -  
TI  - Ergodic theory for the one-dimensional Jacobi operator
JO  - Studia Mathematica
PY  - 1995
SP  - 149
EP  - 171
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/
DO  - 10.4064/sm-117-2-149-171
LA  - en
ID  - 10_4064_sm_117_2_149_171
ER  - 
%0 Journal Article
%A Carmen Núñez
%A  
%T Ergodic theory for the one-dimensional Jacobi operator
%J Studia Mathematica
%D 1995
%P 149-171
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-149-171/
%R 10.4064/sm-117-2-149-171
%G en
%F 10_4064_sm_117_2_149_171
Carmen Núñez;  . Ergodic theory for the one-dimensional Jacobi operator. Studia Mathematica, Tome 117 (1995) no. 2, pp. 149-171. doi: 10.4064/sm-117-2-149-171

Cité par Sources :