Jordan polynomials can be analytically recognized
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 117 (1995) no. 2, pp. 137-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.
            
            
            
          
        
      
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              M. Cabrera Garcia 1 ;  1 ;  1
@article{10_4064_sm_117_2_137_147,
     author = {M. Cabrera Garcia and   and  },
     title = {Jordan polynomials can be analytically recognized},
     journal = {Studia Mathematica},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-117-2-137-147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-137-147/}
}
                      
                      
                    TY - JOUR AU - M. Cabrera Garcia AU - AU - TI - Jordan polynomials can be analytically recognized JO - Studia Mathematica PY - 1995 SP - 137 EP - 147 VL - 117 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-137-147/ DO - 10.4064/sm-117-2-137-147 LA - en ID - 10_4064_sm_117_2_137_147 ER -
M. Cabrera Garcia; ; . Jordan polynomials can be analytically recognized. Studia Mathematica, Tome 117 (1995) no. 2, pp. 137-147. doi: 10.4064/sm-117-2-137-147
Cité par Sources :