Accretive approximation in C*-algebras
Studia Mathematica, Tome 117 (1995) no. 2, pp. 115-121

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The problem of approximation by accretive elements in a unital C*-algebra suggested by P. R. Halmos is substantially solved. The key idea is the observation that accretive approximation can be regarded as a combination of positive and self-adjoint approximation. The approximation results are proved both in the C*-norm and in another, topologically equivalent norm.
DOI : 10.4064/sm-117-2-115-121

Reiner Berntzen 1

1
@article{10_4064_sm_117_2_115_121,
     author = {Reiner Berntzen},
     title = {Accretive approximation in {C*-algebras}},
     journal = {Studia Mathematica},
     pages = {115--121},
     publisher = {mathdoc},
     volume = {117},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-117-2-115-121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-115-121/}
}
TY  - JOUR
AU  - Reiner Berntzen
TI  - Accretive approximation in C*-algebras
JO  - Studia Mathematica
PY  - 1995
SP  - 115
EP  - 121
VL  - 117
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-115-121/
DO  - 10.4064/sm-117-2-115-121
LA  - en
ID  - 10_4064_sm_117_2_115_121
ER  - 
%0 Journal Article
%A Reiner Berntzen
%T Accretive approximation in C*-algebras
%J Studia Mathematica
%D 1995
%P 115-121
%V 117
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-117-2-115-121/
%R 10.4064/sm-117-2-115-121
%G en
%F 10_4064_sm_117_2_115_121
Reiner Berntzen. Accretive approximation in C*-algebras. Studia Mathematica, Tome 117 (1995) no. 2, pp. 115-121. doi: 10.4064/sm-117-2-115-121

Cité par Sources :