Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $ℂ^N$
Studia Mathematica, Tome 117 (1995) no. 1, pp. 79-99

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

$G ⊂ ℂ^N$ is compact and convex it is known for a long time that the nonzero constant coefficients linear partial differential operators (of finite or infinite order) are surjective on the space of all analytic functions on G. We consider the question whether solutions of the inhomogeneous equation can be given in terms of a continuous linear operator. For instance we characterize those sets G for which this is always the case.
DOI : 10.4064/sm-117-1-79-99

S. N. Melikhov 1

1
@article{10_4064_sm_117_1_79_99,
     author = {S. N. Melikhov},
     title = {Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $\ensuremath{\mathbb{C}}^N$},
     journal = {Studia Mathematica},
     pages = {79--99},
     publisher = {mathdoc},
     volume = {117},
     number = {1},
     year = {1995},
     doi = {10.4064/sm-117-1-79-99},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-1-79-99/}
}
TY  - JOUR
AU  - S. N. Melikhov
TI  - Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $ℂ^N$
JO  - Studia Mathematica
PY  - 1995
SP  - 79
EP  - 99
VL  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-1-79-99/
DO  - 10.4064/sm-117-1-79-99
LA  - en
ID  - 10_4064_sm_117_1_79_99
ER  - 
%0 Journal Article
%A S. N. Melikhov
%T Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $ℂ^N$
%J Studia Mathematica
%D 1995
%P 79-99
%V 117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-117-1-79-99/
%R 10.4064/sm-117-1-79-99
%G en
%F 10_4064_sm_117_1_79_99
S. N. Melikhov. Solution operators for convolution equations on the germs of analytic functions on compact convex sets in $ℂ^N$. Studia Mathematica, Tome 117 (1995) no. 1, pp. 79-99. doi: 10.4064/sm-117-1-79-99

Cité par Sources :