Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures
Studia Mathematica, Tome 117 (1995) no. 1, pp. 1-28
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Choquet-Deny theorem and Deny's theorem are extended to the vector-valued case. They are applied to give a simple nonprobabilistic proof of the vector-valued renewal theorem, which is used to study the $L^p$-dimension, the $L^p$-density and the Fourier transformation of vector-valued self-similar measures. The results answer some questions raised by Strichartz.
Keywords:
Choquet-Deny theorem, convolution, exponential function, matrices, renewal equation, self-similar measures
Affiliations des auteurs :
Ka-Sing Lau 1
@article{10_4064_sm_117_1_1_28,
author = {Ka-Sing Lau},
title = {Vector-valued {Choquet-Deny} theorem, renewal equation and self-similar measures},
journal = {Studia Mathematica},
pages = {1--28},
publisher = {mathdoc},
volume = {117},
number = {1},
year = {1995},
doi = {10.4064/sm-117-1-1-28},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-117-1-1-28/}
}
TY - JOUR AU - Ka-Sing Lau TI - Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures JO - Studia Mathematica PY - 1995 SP - 1 EP - 28 VL - 117 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-117-1-1-28/ DO - 10.4064/sm-117-1-1-28 LA - en ID - 10_4064_sm_117_1_1_28 ER -
Ka-Sing Lau. Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures. Studia Mathematica, Tome 117 (1995) no. 1, pp. 1-28. doi: 10.4064/sm-117-1-1-28
Cité par Sources :