Weak Cauchy sequences in $L_{∞}(μ,X)$
Studia Mathematica, Tome 116 (1995) no. 3, pp. 271-281

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a finite and positive measure space Ω,∑,μ characterizations of weak Cauchy sequences in $L_{∞}(μ,X)$, the space of μ-essentially bounded vector-valued functions f:Ω → X, are presented. The fine distinction between Asplund and conditionally weakly compact subsets of $L_{∞}(μ,X)$ is discussed.
DOI : 10.4064/sm-116-3-271-281

Georg Schlüchtermann 1

1
@article{10_4064_sm_116_3_271_281,
     author = {Georg Schl\"uchtermann},
     title = {Weak {Cauchy} sequences in $L_{\ensuremath{\infty}}(\ensuremath{\mu},X)$},
     journal = {Studia Mathematica},
     pages = {271--281},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-116-3-271-281},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-271-281/}
}
TY  - JOUR
AU  - Georg Schlüchtermann
TI  - Weak Cauchy sequences in $L_{∞}(μ,X)$
JO  - Studia Mathematica
PY  - 1995
SP  - 271
EP  - 281
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-271-281/
DO  - 10.4064/sm-116-3-271-281
LA  - en
ID  - 10_4064_sm_116_3_271_281
ER  - 
%0 Journal Article
%A Georg Schlüchtermann
%T Weak Cauchy sequences in $L_{∞}(μ,X)$
%J Studia Mathematica
%D 1995
%P 271-281
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-271-281/
%R 10.4064/sm-116-3-271-281
%G en
%F 10_4064_sm_116_3_271_281
Georg Schlüchtermann. Weak Cauchy sequences in $L_{∞}(μ,X)$. Studia Mathematica, Tome 116 (1995) no. 3, pp. 271-281. doi: 10.4064/sm-116-3-271-281

Cité par Sources :