The one-sided minimal operator and the one-sided reverse Holder inequality
Studia Mathematica, Tome 116 (1995) no. 3, pp. 255-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce the one-sided minimal operator, $m^+f$, which is analogous to the one-sided maximal operator. We determine the weight classes which govern its two-weight, strong and weak-type norm inequalities, and show that these two classes are the same. Then in the one-weight case we use this class to introduce a new one-sided reverse Hölder inequality which has several applications to one-sided $(A^+_p)$ weights.
Keywords:
one-sided (A_p) weights, reverse Hölder inequality, minimal function
Affiliations des auteurs :
David Cruz-Uribe 1
@article{10_4064_sm_116_3_255_270,
author = {David Cruz-Uribe},
title = {The one-sided minimal operator and the one-sided reverse {Holder} inequality},
journal = {Studia Mathematica},
pages = {255--270},
publisher = {mathdoc},
volume = {116},
number = {3},
year = {1995},
doi = {10.4064/sm-116-3-255-270},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-255-270/}
}
TY - JOUR AU - David Cruz-Uribe TI - The one-sided minimal operator and the one-sided reverse Holder inequality JO - Studia Mathematica PY - 1995 SP - 255 EP - 270 VL - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-255-270/ DO - 10.4064/sm-116-3-255-270 LA - en ID - 10_4064_sm_116_3_255_270 ER -
%0 Journal Article %A David Cruz-Uribe %T The one-sided minimal operator and the one-sided reverse Holder inequality %J Studia Mathematica %D 1995 %P 255-270 %V 116 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-255-270/ %R 10.4064/sm-116-3-255-270 %G en %F 10_4064_sm_116_3_255_270
David Cruz-Uribe. The one-sided minimal operator and the one-sided reverse Holder inequality. Studia Mathematica, Tome 116 (1995) no. 3, pp. 255-270. doi: 10.4064/sm-116-3-255-270
Cité par Sources :