On Dirichlet-Schrödinger operators with strong potentials
Studia Mathematica, Tome 116 (1995) no. 3, pp. 239-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider Schrödinger operators H = -Δ/2 + V (V≥0 and locally bounded) with Dirichlet boundary conditions, on any open and connected subdomain $D ⊂ ℝ^n$ which either is bounded or satisfies the condition $d(x,D^{c}) → 0$ as |x| → ∞. We prove exponential decay at the boundary of all the eigenfunctions of H whenever V diverges sufficiently fast at the boundary ∂D, in the sense that $d(x,D^C)^{2}V(x) → ∞$ as $d(x,D^C) → 0$. We also prove bounds from above and below for Tr(exp[-tH]), and in particular we give criterions for the finiteness of such trace. Applications to pointwise bounds for the integral kernel of exp[-tH] and to the computation of expected values of the Feynman-Kac functional with respect to Doob h-conditioned measures are given as well.
@article{10_4064_sm_116_3_239_254,
author = {Gabriele Grillo},
title = {On {Dirichlet-Schr\"odinger} operators with strong potentials},
journal = {Studia Mathematica},
pages = {239--254},
publisher = {mathdoc},
volume = {116},
number = {3},
year = {1995},
doi = {10.4064/sm-116-3-239-254},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-239-254/}
}
TY - JOUR AU - Gabriele Grillo TI - On Dirichlet-Schrödinger operators with strong potentials JO - Studia Mathematica PY - 1995 SP - 239 EP - 254 VL - 116 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-239-254/ DO - 10.4064/sm-116-3-239-254 LA - en ID - 10_4064_sm_116_3_239_254 ER -
Gabriele Grillo. On Dirichlet-Schrödinger operators with strong potentials. Studia Mathematica, Tome 116 (1995) no. 3, pp. 239-254. doi: 10.4064/sm-116-3-239-254
Cité par Sources :