A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace
Studia Mathematica, Tome 116 (1995) no. 3, pp. 217-223
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let C be a closed, bounded, convex subset of a Hilbert space. Let T : C → C be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.
@article{10_4064_sm_116_3_217_223,
author = {James Moloney},
title = {A fixed point theorem for demicontinuous pseudo-contractions in {Hilbert} apace},
journal = {Studia Mathematica},
pages = {217--223},
year = {1995},
volume = {116},
number = {3},
doi = {10.4064/sm-116-3-217-223},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-217-223/}
}
TY - JOUR AU - James Moloney TI - A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace JO - Studia Mathematica PY - 1995 SP - 217 EP - 223 VL - 116 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-217-223/ DO - 10.4064/sm-116-3-217-223 LA - en ID - 10_4064_sm_116_3_217_223 ER -
James Moloney. A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace. Studia Mathematica, Tome 116 (1995) no. 3, pp. 217-223. doi: 10.4064/sm-116-3-217-223
Cité par Sources :