A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace
Studia Mathematica, Tome 116 (1995) no. 3, pp. 217-223

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let C be a closed, bounded, convex subset of a Hilbert space. Let T : C → C be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.
DOI : 10.4064/sm-116-3-217-223

James Moloney 1

1
@article{10_4064_sm_116_3_217_223,
     author = {James Moloney},
     title = {A fixed point theorem for demicontinuous pseudo-contractions in {Hilbert} apace},
     journal = {Studia Mathematica},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1995},
     doi = {10.4064/sm-116-3-217-223},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-217-223/}
}
TY  - JOUR
AU  - James Moloney
TI  - A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace
JO  - Studia Mathematica
PY  - 1995
SP  - 217
EP  - 223
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-217-223/
DO  - 10.4064/sm-116-3-217-223
LA  - en
ID  - 10_4064_sm_116_3_217_223
ER  - 
%0 Journal Article
%A James Moloney
%T A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace
%J Studia Mathematica
%D 1995
%P 217-223
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-3-217-223/
%R 10.4064/sm-116-3-217-223
%G en
%F 10_4064_sm_116_3_217_223
James Moloney. A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace. Studia Mathematica, Tome 116 (1995) no. 3, pp. 217-223. doi: 10.4064/sm-116-3-217-223

Cité par Sources :