Operator fractional-linear transformations: convexity and compactness of image; applications
Studia Mathematica, Tome 116 (1995) no. 2, pp. 189-195
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The present paper consists of two parts. In Section 1 we consider fractional-linear transformations (f.-l.t. for brevity) F in the space $ℒ(X_1,X_2)$ of all linear bounded operators acting from $X_1$ into $X_2$, where $X_1, X_2$ are Banach spaces. We show that in the case of Hilbert spaces $X_1, X_2$ the image F(ℬ) of any (open or closed) ball ℬ ⊂ D(F) is convex, and if ℬ is closed, then F(ℬ) is compact in the weak operator topology (w.o.t.) (Theorem 1.2). These results extend the corresponding results on compactness obtained in [3], [4] under some additional restrictions imposed on F. We also establish that the convexity of the image of f.-l.t. is a characteristic property of Hilbert spaces, that is, if for the f.-l.t. $F:K → (I+K)^{-1}$ the image $F(
Keywords:
Hilbert space, fractional-linear transformation, evolution operator, indefinite metric
Affiliations des auteurs :
V. Khatskevich 1
@article{10_4064_sm_116_2_189_195,
author = {V. Khatskevich},
title = {Operator fractional-linear transformations: convexity and compactness of image; applications},
journal = {Studia Mathematica},
pages = {189--195},
publisher = {mathdoc},
volume = {116},
number = {2},
year = {1995},
doi = {10.4064/sm-116-2-189-195},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-189-195/}
}
TY - JOUR AU - V. Khatskevich TI - Operator fractional-linear transformations: convexity and compactness of image; applications JO - Studia Mathematica PY - 1995 SP - 189 EP - 195 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-189-195/ DO - 10.4064/sm-116-2-189-195 LA - en ID - 10_4064_sm_116_2_189_195 ER -
%0 Journal Article %A V. Khatskevich %T Operator fractional-linear transformations: convexity and compactness of image; applications %J Studia Mathematica %D 1995 %P 189-195 %V 116 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-189-195/ %R 10.4064/sm-116-2-189-195 %G en %F 10_4064_sm_116_2_189_195
V. Khatskevich. Operator fractional-linear transformations: convexity and compactness of image; applications. Studia Mathematica, Tome 116 (1995) no. 2, pp. 189-195. doi: 10.4064/sm-116-2-189-195
Cité par Sources :