Operator fractional-linear transformations: convexity and compactness of image; applications
Studia Mathematica, Tome 116 (1995) no. 2, pp. 189-195

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The present paper consists of two parts. In Section 1 we consider fractional-linear transformations (f.-l.t. for brevity) F in the space $ℒ(X_1,X_2)$ of all linear bounded operators acting from $X_1$ into $X_2$, where $X_1, X_2$ are Banach spaces. We show that in the case of Hilbert spaces $X_1, X_2$ the image F(ℬ) of any (open or closed) ball ℬ ⊂ D(F) is convex, and if ℬ is closed, then F(ℬ) is compact in the weak operator topology (w.o.t.) (Theorem 1.2). These results extend the corresponding results on compactness obtained in [3], [4] under some additional restrictions imposed on F. We also establish that the convexity of the image of f.-l.t. is a characteristic property of Hilbert spaces, that is, if for the f.-l.t. $F:K → (I+K)^{-1}$ the image $F(
DOI : 10.4064/sm-116-2-189-195
Keywords: Hilbert space, fractional-linear transformation, evolution operator, indefinite metric

V. Khatskevich 1

1
@article{10_4064_sm_116_2_189_195,
     author = {V. Khatskevich},
     title = {Operator fractional-linear transformations: convexity and compactness of image; applications},
     journal = {Studia Mathematica},
     pages = {189--195},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-116-2-189-195},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-189-195/}
}
TY  - JOUR
AU  - V. Khatskevich
TI  - Operator fractional-linear transformations: convexity and compactness of image; applications
JO  - Studia Mathematica
PY  - 1995
SP  - 189
EP  - 195
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-189-195/
DO  - 10.4064/sm-116-2-189-195
LA  - en
ID  - 10_4064_sm_116_2_189_195
ER  - 
%0 Journal Article
%A V. Khatskevich
%T Operator fractional-linear transformations: convexity and compactness of image; applications
%J Studia Mathematica
%D 1995
%P 189-195
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-189-195/
%R 10.4064/sm-116-2-189-195
%G en
%F 10_4064_sm_116_2_189_195
V. Khatskevich. Operator fractional-linear transformations: convexity and compactness of image; applications. Studia Mathematica, Tome 116 (1995) no. 2, pp. 189-195. doi: 10.4064/sm-116-2-189-195

Cité par Sources :