Weighted inequalities for monotone and concave functions
Studia Mathematica, Tome 116 (1995) no. 2, pp. 133-165

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.
DOI : 10.4064/sm-116-2-133-165
Keywords: weighted integral inequalities, weighted Hardy inequalities, weighted Hardy inequalities for monotone functions, weighted Favard-Berwald inequality, reverse Hölder inequality, concave functions

Hans Heinig 1 ;  1

1
@article{10_4064_sm_116_2_133_165,
     author = {Hans Heinig and  },
     title = {Weighted inequalities for monotone and concave functions},
     journal = {Studia Mathematica},
     pages = {133--165},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-116-2-133-165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-133-165/}
}
TY  - JOUR
AU  - Hans Heinig
AU  -  
TI  - Weighted inequalities for monotone and concave functions
JO  - Studia Mathematica
PY  - 1995
SP  - 133
EP  - 165
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-133-165/
DO  - 10.4064/sm-116-2-133-165
LA  - en
ID  - 10_4064_sm_116_2_133_165
ER  - 
%0 Journal Article
%A Hans Heinig
%A  
%T Weighted inequalities for monotone and concave functions
%J Studia Mathematica
%D 1995
%P 133-165
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-133-165/
%R 10.4064/sm-116-2-133-165
%G en
%F 10_4064_sm_116_2_133_165
Hans Heinig;  . Weighted inequalities for monotone and concave functions. Studia Mathematica, Tome 116 (1995) no. 2, pp. 133-165. doi: 10.4064/sm-116-2-133-165

Cité par Sources :