Weighted inequalities for monotone and concave functions
Studia Mathematica, Tome 116 (1995) no. 2, pp. 133-165
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Characterizations of weight functions are given for which integral inequalities of monotone and concave functions are satisfied. The constants in these inequalities are sharp and in the case of concave functions, constitute weighted forms of Favard-Berwald inequalities on finite and infinite intervals. Related inequalities, some of Hardy type, are also given.
Keywords:
weighted integral inequalities, weighted Hardy inequalities, weighted Hardy inequalities for monotone functions, weighted Favard-Berwald inequality, reverse Hölder inequality, concave functions
Affiliations des auteurs :
Hans Heinig 1 ;  1
@article{10_4064_sm_116_2_133_165,
author = {Hans Heinig and },
title = {Weighted inequalities for monotone and concave functions},
journal = {Studia Mathematica},
pages = {133--165},
publisher = {mathdoc},
volume = {116},
number = {2},
year = {1995},
doi = {10.4064/sm-116-2-133-165},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-133-165/}
}
TY - JOUR AU - Hans Heinig AU - TI - Weighted inequalities for monotone and concave functions JO - Studia Mathematica PY - 1995 SP - 133 EP - 165 VL - 116 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-133-165/ DO - 10.4064/sm-116-2-133-165 LA - en ID - 10_4064_sm_116_2_133_165 ER -
Hans Heinig; . Weighted inequalities for monotone and concave functions. Studia Mathematica, Tome 116 (1995) no. 2, pp. 133-165. doi: 10.4064/sm-116-2-133-165
Cité par Sources :