The local versions of $H^p(ℝ^n)$ spaces at the origin
Studia Mathematica, Tome 116 (1995) no. 2, pp. 103-131

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let 0 p ≤ 1 q ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces $HK̇_q^{α,p}(ℝ^n)$ which are the local versions of $H^p(ℝ^n)$ spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth's sense. We also prove an interpolation theorem for operators on $HK̇_q^{α,p}(ℝ^n)$ and discuss the $HK̇_q^{α,p}(ℝ^n)$-boundedness of Calderón-Zygmund operators. Similar results can also be obtained for the non-homogeneous Hardy spaces $HK_q^{α,p}(ℝ^n)$.
DOI : 10.4064/sm-116-2-103-131

Shan Zhen Lu 1

1
@article{10_4064_sm_116_2_103_131,
     author = {Shan Zhen Lu},
     title = {The local versions of $H^p(\ensuremath{\mathbb{R}}^n)$ spaces at the origin},
     journal = {Studia Mathematica},
     pages = {103--131},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {1995},
     doi = {10.4064/sm-116-2-103-131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-103-131/}
}
TY  - JOUR
AU  - Shan Zhen Lu
TI  - The local versions of $H^p(ℝ^n)$ spaces at the origin
JO  - Studia Mathematica
PY  - 1995
SP  - 103
EP  - 131
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-103-131/
DO  - 10.4064/sm-116-2-103-131
LA  - en
ID  - 10_4064_sm_116_2_103_131
ER  - 
%0 Journal Article
%A Shan Zhen Lu
%T The local versions of $H^p(ℝ^n)$ spaces at the origin
%J Studia Mathematica
%D 1995
%P 103-131
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-103-131/
%R 10.4064/sm-116-2-103-131
%G en
%F 10_4064_sm_116_2_103_131
Shan Zhen Lu. The local versions of $H^p(ℝ^n)$ spaces at the origin. Studia Mathematica, Tome 116 (1995) no. 2, pp. 103-131. doi: 10.4064/sm-116-2-103-131

Cité par Sources :