The local versions of $H^p(ℝ^n)$ spaces at the origin
Studia Mathematica, Tome 116 (1995) no. 2, pp. 103-131
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let 0 p ≤ 1 q ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces $HK̇_q^{α,p}(ℝ^n)$ which are the local versions of $H^p(ℝ^n)$ spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth's sense. We also prove an interpolation theorem for operators on $HK̇_q^{α,p}(ℝ^n)$ and discuss the $HK̇_q^{α,p}(ℝ^n)$-boundedness of Calderón-Zygmund operators. Similar results can also be obtained for the non-homogeneous Hardy spaces $HK_q^{α,p}(ℝ^n)$.
@article{10_4064_sm_116_2_103_131,
author = {Shan Zhen Lu},
title = {The local versions of $H^p(\ensuremath{\mathbb{R}}^n)$ spaces at the origin},
journal = {Studia Mathematica},
pages = {103--131},
year = {1995},
volume = {116},
number = {2},
doi = {10.4064/sm-116-2-103-131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-116-2-103-131/}
}
Shan Zhen Lu. The local versions of $H^p(ℝ^n)$ spaces at the origin. Studia Mathematica, Tome 116 (1995) no. 2, pp. 103-131. doi: 10.4064/sm-116-2-103-131
Cité par Sources :