Second order unbounded parabolic equations in separated form
Studia Mathematica, Tome 115 (1995) no. 3, pp. 291-310
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove existence and uniqueness of viscosity solutions of Cauchy problems for fully nonlinear unbounded second order Hamilton-Jacobi-Bellman-Isaacs equations defined on the product of two infinite-dimensional Hilbert spaces H'× H'', where H'' is separable. The equations have a special "separated" form in the sense that the terms involving second derivatives are everywhere defined, continuous and depend only on derivatives with respect to x'' ∈ H'', while the unbounded terms are of first order and depend only on derivatives with respect to x' ∈ H'.
@article{10_4064_sm_115_3_291_310,
author = {Maciej Kocan},
title = {Second order unbounded parabolic equations in separated form},
journal = {Studia Mathematica},
pages = {291--310},
year = {1995},
volume = {115},
number = {3},
doi = {10.4064/sm-115-3-291-310},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-291-310/}
}
TY - JOUR AU - Maciej Kocan TI - Second order unbounded parabolic equations in separated form JO - Studia Mathematica PY - 1995 SP - 291 EP - 310 VL - 115 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-291-310/ DO - 10.4064/sm-115-3-291-310 LA - en ID - 10_4064_sm_115_3_291_310 ER -
Maciej Kocan. Second order unbounded parabolic equations in separated form. Studia Mathematica, Tome 115 (1995) no. 3, pp. 291-310. doi: 10.4064/sm-115-3-291-310
Cité par Sources :