Second order unbounded parabolic equations in separated form
Studia Mathematica, Tome 115 (1995) no. 3, pp. 291-310
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove existence and uniqueness of viscosity solutions of Cauchy problems for fully nonlinear unbounded second order Hamilton-Jacobi-Bellman-Isaacs equations defined on the product of two infinite-dimensional Hilbert spaces H'× H'', where H'' is separable. The equations have a special "separated" form in the sense that the terms involving second derivatives are everywhere defined, continuous and depend only on derivatives with respect to x'' ∈ H'', while the unbounded terms are of first order and depend only on derivatives with respect to x' ∈ H'.
@article{10_4064_sm_115_3_291_310,
author = {Maciej Kocan},
title = {Second order unbounded parabolic equations in separated form},
journal = {Studia Mathematica},
pages = {291--310},
publisher = {mathdoc},
volume = {115},
number = {3},
year = {1995},
doi = {10.4064/sm-115-3-291-310},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-291-310/}
}
TY - JOUR AU - Maciej Kocan TI - Second order unbounded parabolic equations in separated form JO - Studia Mathematica PY - 1995 SP - 291 EP - 310 VL - 115 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-115-3-291-310/ DO - 10.4064/sm-115-3-291-310 LA - en ID - 10_4064_sm_115_3_291_310 ER -
Maciej Kocan. Second order unbounded parabolic equations in separated form. Studia Mathematica, Tome 115 (1995) no. 3, pp. 291-310. doi: 10.4064/sm-115-3-291-310
Cité par Sources :